From c257cd7a7e766fb89332cca4fb367904767362ed Mon Sep 17 00:00:00 2001 From: Brijeshcr Date: Thu, 30 Nov 2017 18:27:20 +0530 Subject: Help files and functions --- help/en_US/ac2rc.xml | 29 +- help/en_US/arburg.xml | 4 + help/en_US/arch_rnd.xml | 74 +++ help/en_US/arcov.xml | 24 +- help/en_US/arma_rnd.xml | 82 ++++ help/en_US/aryule.xml | 2 + help/en_US/besselap.xml | 71 +++ help/en_US/buttap.xml | 67 +++ help/en_US/cceps.xml | 23 + help/en_US/cheb.xml | 65 +++ help/en_US/cheb1ap.xml | 75 +++ help/en_US/cheb2ap.xml | 63 +++ help/en_US/cl2bp.xml | 75 +++ help/en_US/cplxreal.xml | 66 +++ help/en_US/czt.xml | 23 + help/en_US/dst1.xml | 23 + help/en_US/ellipap.xml | 68 +++ help/en_US/fft1.xml | 74 +++ help/en_US/fft21.xml | 68 +++ help/en_US/fftw1.xml | 94 ++++ help/en_US/fht.xml | 23 + help/en_US/freqs.xml | 61 +++ help/en_US/fwht.xml | 23 + help/en_US/hilbert1.xml | 23 + help/en_US/hurst.xml | 23 + help/en_US/idct1.xml | 23 + help/en_US/idct2.xml | 23 + help/en_US/idst1.xml | 23 + help/en_US/ifft1.xml | 81 ++++ help/en_US/ifft21.xml | 68 +++ help/en_US/ifht.xml | 23 + help/en_US/ifwht.xml | 23 + help/en_US/invfreq.xml | 23 + help/en_US/invfreqs.xml | 78 ++++ help/en_US/invfreqz.xml | 76 ++++ help/en_US/kaiserord.xml | 84 ++++ help/en_US/master_help.xml | 504 +++++---------------- help/en_US/ncauer.xml | 71 +++ help/en_US/pburg.xml | 71 +++ help/en_US/pei_tseng_notch.xml | 66 +++ help/en_US/pyulear.xml | 51 +++ help/en_US/qp_kaiser.xml | 64 +++ help/en_US/rceps.xml | 23 + help/en_US/remez1.xml | 23 + help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS | Bin 11007 -> 13715 bytes .../scilab_en_US_help/JavaHelpSearch/DOCS.TAB | Bin 1499 -> 1836 bytes .../en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS | Bin 687 -> 873 bytes .../scilab_en_US_help/JavaHelpSearch/POSITIONS | Bin 46489 -> 56855 bytes help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA | 2 +- help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP | Bin 24576 -> 28672 bytes help/en_US/scilab_en_US_help/jhelpmap.jhm | 59 ++- help/en_US/scilab_en_US_help/jhelptoc.xml | 59 ++- help/en_US/sftrans.xml | 100 ++++ help/en_US/sigmoid_train.xml | 23 + help/en_US/sinetone.xml | 23 + help/en_US/sinewave.xml | 23 + help/en_US/spectral_adf.xml | 23 + help/en_US/spectral_xdf.xml | 23 + help/en_US/spencer.xml | 23 + help/en_US/stft.xml | 23 + help/en_US/synthesis.xml | 23 + help/en_US/tfestimate.xml | 77 ++++ help/en_US/wconv.xml | 64 +++ help/en_US/xcorr1.xml | 81 ++++ help/en_US/xcov1.xml | 23 + help/en_US/yulewalker.xml | 23 + help/en_US/zp2ss.xml | 90 ++++ help/en_US/zp2tf.xml | 72 +++ 68 files changed, 3050 insertions(+), 405 deletions(-) create mode 100644 help/en_US/arch_rnd.xml create mode 100644 help/en_US/arma_rnd.xml create mode 100644 help/en_US/besselap.xml create mode 100644 help/en_US/buttap.xml create mode 100644 help/en_US/cceps.xml create mode 100644 help/en_US/cheb.xml create mode 100644 help/en_US/cheb1ap.xml create mode 100644 help/en_US/cheb2ap.xml create mode 100644 help/en_US/cl2bp.xml create mode 100644 help/en_US/cplxreal.xml create mode 100644 help/en_US/czt.xml create mode 100644 help/en_US/dst1.xml create mode 100644 help/en_US/ellipap.xml create mode 100644 help/en_US/fft1.xml create mode 100644 help/en_US/fft21.xml create mode 100644 help/en_US/fftw1.xml create mode 100644 help/en_US/fht.xml create mode 100644 help/en_US/freqs.xml create mode 100644 help/en_US/fwht.xml create mode 100644 help/en_US/hilbert1.xml create mode 100644 help/en_US/hurst.xml create mode 100644 help/en_US/idct1.xml create mode 100644 help/en_US/idct2.xml create mode 100644 help/en_US/idst1.xml create mode 100644 help/en_US/ifft1.xml create mode 100644 help/en_US/ifft21.xml create mode 100644 help/en_US/ifht.xml create mode 100644 help/en_US/ifwht.xml create mode 100644 help/en_US/invfreq.xml create mode 100644 help/en_US/invfreqs.xml create mode 100644 help/en_US/invfreqz.xml create mode 100644 help/en_US/kaiserord.xml create mode 100644 help/en_US/ncauer.xml create mode 100644 help/en_US/pburg.xml create mode 100644 help/en_US/pei_tseng_notch.xml create mode 100644 help/en_US/pyulear.xml create mode 100644 help/en_US/qp_kaiser.xml create mode 100644 help/en_US/rceps.xml create mode 100644 help/en_US/remez1.xml create mode 100644 help/en_US/sftrans.xml create mode 100644 help/en_US/sigmoid_train.xml create mode 100644 help/en_US/sinetone.xml create mode 100644 help/en_US/sinewave.xml create mode 100644 help/en_US/spectral_adf.xml create mode 100644 help/en_US/spectral_xdf.xml create mode 100644 help/en_US/spencer.xml create mode 100644 help/en_US/stft.xml create mode 100644 help/en_US/synthesis.xml create mode 100644 help/en_US/tfestimate.xml create mode 100644 help/en_US/wconv.xml create mode 100644 help/en_US/xcorr1.xml create mode 100644 help/en_US/xcov1.xml create mode 100644 help/en_US/yulewalker.xml create mode 100644 help/en_US/zp2ss.xml create mode 100644 help/en_US/zp2tf.xml (limited to 'help/en_US') diff --git a/help/en_US/ac2rc.xml b/help/en_US/ac2rc.xml index 2e8a109..a84b240 100644 --- a/help/en_US/ac2rc.xml +++ b/help/en_US/ac2rc.xml @@ -17,7 +17,7 @@ ac2rc - + Convert autocorrelation sequence to reflection coefficients. @@ -26,6 +26,33 @@ k = ac2rc(R) [k,R0] = ac2rc(R) + + + + Parameters + + R: + The input autocorrelation sequence. If r is a matrix, each column of r is treated as a separate signal. + k: + Returns the reflection coefficients + R0: + the zero lag autocorrelation, R0, based on the autocorrelation sequence, R. + + + + + Examples + + diff --git a/help/en_US/arburg.xml b/help/en_US/arburg.xml index 75648ba..6aa017e 100644 --- a/help/en_US/arburg.xml +++ b/help/en_US/arburg.xml @@ -49,7 +49,11 @@ Description This is an Octave function. + + This function calculates coefficients of an autoregressive (AR) model of complex data x using the whitening lattice-filter method of Burg. + + The first argument is the data sampled. The second argument is the number of poles in the model (or limit in case a criterion is supplied). The third parameter takes in the criterion to limit the number of poles. The acceptable values are "AIC", "AKICc", "KIC", "AICc" which are based on information theory. Output variable a is a list of P+1 autoregression coefficients. diff --git a/help/en_US/arch_rnd.xml b/help/en_US/arch_rnd.xml new file mode 100644 index 0000000..4692e05 --- /dev/null +++ b/help/en_US/arch_rnd.xml @@ -0,0 +1,74 @@ + + + + + + + + arch_rnd + Simulate an ARCH sequence of length t with AR coefficients b and CH coefficients a. + + + + + Calling Sequence + + arch_rnd (a, b, t) + + + + + Parameters + + a: + CH coefficients + b: + AR coefficients + t: + Length of ARCH sequence + + + + + Description + +This is an Octave function. +It Simulates an ARCH sequence of length t with AR coefficients b and CH coefficients a. +The result y(t) follows the model + + +y(t) = b(1) + b(2) * y(t-1) + … + b(lb) * y(t-lb+1) + e(t), +where e(t), given y up to time t-1, is N(0, h(t)), with + + +h(t) = a(1) + a(2) * e(t-1)^2 + … + a(la) * e(t-la+1)^2 + + + + + Examples + + + diff --git a/help/en_US/arcov.xml b/help/en_US/arcov.xml index 64a5364..11f1d94 100644 --- a/help/en_US/arcov.xml +++ b/help/en_US/arcov.xml @@ -17,7 +17,29 @@ arcov - + Autoregressive all-pole model parameters — covariance method + + + Calling Sequence + + a = arcov(x,p) + [a,e] = arcov(x,p) + + + + + Parameters + + a: + contains normalized estimates of the AR system parameters, A(z), in descending powers of z. + e: + variance estimate of the white noise input to the AR model + x: + is the input signal + p: + is the order of the auto regressive model + + diff --git a/help/en_US/arma_rnd.xml b/help/en_US/arma_rnd.xml new file mode 100644 index 0000000..fdf1c26 --- /dev/null +++ b/help/en_US/arma_rnd.xml @@ -0,0 +1,82 @@ + + + + + + + + arma_rnd + Return a simulation of the ARMA model. + + + + + Calling Sequence + + arma_rnd (a, b, v, t, n) + arma_rnd (a, b, v, t) + + + + + Parameters + + a: + vector + b: + vector + v: + Variance + t: + Length of output vector + n: + Number of dummy x(i) used for initialization + + + + + Description + +This is an Octave function. +The ARMA model is defined by + + +x(n) = a(1) * x(n-1) + … + a(k) * x(n-k) ++ e(n) + b(1) * e(n-1) + … + b(l) * e(n-l) +in which k is the length of vector a, l is the length of vector b and e is Gaussian white noise with variance v. The function returns a vector of length t. + + +The optional parameter n gives the number of dummy x(i) used for initialization, i.e., a sequence of length t+n is generated and x(n+1:t+n) is returned. If n is omitted, n = 100 is used. + + + + + Examples + + + diff --git a/help/en_US/aryule.xml b/help/en_US/aryule.xml index 9948a0f..7d706fd 100644 --- a/help/en_US/aryule.xml +++ b/help/en_US/aryule.xml @@ -46,6 +46,8 @@ Description This is an Octave function. + + This function fits an AR (p)-model with Yule-Walker estimates. The first argument is the data vector which is to be estimated. Output variable a gives the AR coefficients, v gives the variance of the white noise and k gives the reflection coefficients to be used in the lattice filter. diff --git a/help/en_US/besselap.xml b/help/en_US/besselap.xml new file mode 100644 index 0000000..f3236d7 --- /dev/null +++ b/help/en_US/besselap.xml @@ -0,0 +1,71 @@ + + + + + + + + besselap + Return bessel analog filter prototype. + + + + + Calling Sequence + + [zero, pole, gain] = besselap (n) + [zero, pole] = besselap (n) + zero = besselap (n) + + + + + Parameters + + n: + Filter Order + zero: + Zeros + pole: + Poles + gain: + Gain + + + + + Description + +This is an Octave function. +It Return bessel analog filter prototype of nth order. + + + + + Examples + + + diff --git a/help/en_US/buttap.xml b/help/en_US/buttap.xml new file mode 100644 index 0000000..d891af5 --- /dev/null +++ b/help/en_US/buttap.xml @@ -0,0 +1,67 @@ + + + + + + + + buttap + Design a lowpass analog Butterworth filter. + + + + + Calling Sequence + + z = buttap (n) + [z, p] = buttap (n) + [z, p, g] = buttap (n) + + + + + Parameters + + n: + Filter Order + z: + Zeros + p: + Poles + g: + Gain + + + + + Description + +This is an Octave function. +It designs a lowpass analog Butterworth filter of nth order. + + + + + Examples + + + diff --git a/help/en_US/cceps.xml b/help/en_US/cceps.xml new file mode 100644 index 0000000..8f270f6 --- /dev/null +++ b/help/en_US/cceps.xml @@ -0,0 +1,23 @@ + + + + + + + + cceps + + + + diff --git a/help/en_US/cheb.xml b/help/en_US/cheb.xml new file mode 100644 index 0000000..7e39e30 --- /dev/null +++ b/help/en_US/cheb.xml @@ -0,0 +1,65 @@ + + + + + + + + cheb + Calculates the nth-order Chebyshev polynomial at the point x. + + + + + Calling Sequence + + cheb(n, x) + + + + + Parameters + + n: + Filter order + x: + Point at which the Chebyshev polynomial is calculater. + + + + + Description + +This is an Octave function. +Equation for Chebyshev polynomial is +/ cos(n acos(x), |x| <= 1 +Tn(x) = | +\ cosh(n acosh(x), |x| > 1 + + +x can also be a vector. In that case the output will also be a vector of same size as x. + + + + + Examples + + + diff --git a/help/en_US/cheb1ap.xml b/help/en_US/cheb1ap.xml new file mode 100644 index 0000000..dbd541a --- /dev/null +++ b/help/en_US/cheb1ap.xml @@ -0,0 +1,75 @@ + + + + + + + + cheb1ap + This function designs a lowpass analog Chebyshev type I filter. + + + + + Calling Sequence + + [z, p, g] = cheb1ap (n, Rp) + [z, p] = cheb1ap (n, Rp) + p = cheb1ap (n, Rp) + + + + + Parameters + + n: + Filter Order + Rp: + Peak-to-peak passband ripple + z: + Zeros + p: + Poles + g: + Gain + + + + + Description + +This is an Octave function. +It designs a lowpass analog Chebyshev type I filter of nth order and with a Peak-to-peak passband ripple of Rp. + + + + + Examples + + + diff --git a/help/en_US/cheb2ap.xml b/help/en_US/cheb2ap.xml new file mode 100644 index 0000000..0fcdd8f --- /dev/null +++ b/help/en_US/cheb2ap.xml @@ -0,0 +1,63 @@ + + + + + + + + cheb2ap + This function designs a lowpass analog Chebyshev type II filter. + + + + + Calling Sequence + + [z, p, g] = cheb2ap (n, Rs) + [z, p] = cheb2ap (n, Rs) + p = cheb2ap (n, Rs) + + + + + Parameters + + n: + Filter Order + Rs: + Stopband attenuation + z: + Zeros + p: + Poles + g: + Gain + + + + + Description + +This is an Octave function. +This function designs a lowpass analog Chebyshev type II filter of nth order and with a stopband attenuation of Rs. + + + + + Examples + + + diff --git a/help/en_US/cl2bp.xml b/help/en_US/cl2bp.xml new file mode 100644 index 0000000..d91c257 --- /dev/null +++ b/help/en_US/cl2bp.xml @@ -0,0 +1,75 @@ + + + + + + + + cl2bp + Constrained L2 bandpass FIR filter design. + + + + + Calling Sequence + + h = cl2bp (m, w1, w2, up, lo, gridsize) + h = cl2bp (m, w1, w2, up, lo) + + + + + Parameters + + m: + degree of cosine polynomial, i.e. the number of output coefficients will be m*2+1 + w1 and w2: + bandpass filter cutoffs in the range 0 <= w1 < w2 <= pi, where pi is the Nyquist frequency + up: + vector of 3 upper bounds for [stopband1, passband, stopband2] + lo: + vector of 3 lower bounds for [stopband1, passband, stopband2] + gridsize: + search grid size; larger values may improve accuracy, but greatly increase calculation time. + + + + + Description + +This is an Octave function. +Constrained L2 bandpass FIR filter design. Compared to remez, it offers implicit specification of transition bands, a higher likelihood of convergence, and an error criterion combining features of both L2 and Chebyshev approaches. + + + + + Examples + + + diff --git a/help/en_US/cplxreal.xml b/help/en_US/cplxreal.xml new file mode 100644 index 0000000..e33c102 --- /dev/null +++ b/help/en_US/cplxreal.xml @@ -0,0 +1,66 @@ + + + + + + + + cplxreal + Function to divide vector z into complex and real elements, removing the one of each complex conjugate pair. + + + + + Calling Sequence + + [zc, zr] = cplxreal (z, thresh) + [zc, zr] = cplxreal (z) + zc = cplxreal (z, thresh) + zc = cplxreal (z) + + + + + Parameters + + z: + vector of complex numbers. + thresh: + tolerance for comparisons. + zc: + vector containing the elements of z that have positive imaginary parts. + zr: + vector containing the elements of z that are real. + + + + + Description + +This is an Octave function. +Every complex element of z is expected to have a complex-conjugate elsewhere in z. From the pair of complex-conjugates, the one with the negative imaginary part is removed. +If the magnitude of the imaginary part of an element is less than the thresh, it is declared as real. + + + + + Examples + + + diff --git a/help/en_US/czt.xml b/help/en_US/czt.xml new file mode 100644 index 0000000..b5f70c6 --- /dev/null +++ b/help/en_US/czt.xml @@ -0,0 +1,23 @@ + + + + + + + + czt + + + + diff --git a/help/en_US/dst1.xml b/help/en_US/dst1.xml new file mode 100644 index 0000000..e41beb5 --- /dev/null +++ b/help/en_US/dst1.xml @@ -0,0 +1,23 @@ + + + + + + + + dst1 + + + + diff --git a/help/en_US/ellipap.xml b/help/en_US/ellipap.xml new file mode 100644 index 0000000..597a4c1 --- /dev/null +++ b/help/en_US/ellipap.xml @@ -0,0 +1,68 @@ + + + + + + + + ellipap + Designs a lowpass analog elliptic filter. + + + + + Calling Sequence + + [z, p, g] = ellipap (n, Rp, Rs) + [z, p] = ellipap (n, Rp, Rs) + z = ellipap (n, Rp, Rs) + + + + + Parameters + + n: + Filter Order + Rp: + Peak-to-peak passband ripple + Rs: + Stopband attenuation + + + + + Description + +This is an Octave function. +It designs a lowpass analog elliptic filter of nth order, with a Peak-to-peak passband ripple of Rp and a stopband attenuation of Rs. + + + + + Examples + + + diff --git a/help/en_US/fft1.xml b/help/en_US/fft1.xml new file mode 100644 index 0000000..2989876 --- /dev/null +++ b/help/en_US/fft1.xml @@ -0,0 +1,74 @@ + + + + + + + + fft1 + Calculates the discrete Fourier transform of a matrix using Fast Fourier Transform algorithm. + + + + + Calling Sequence + + fft (x, n, dim) + fft (x, n) + fft (x) + + + + + Parameters + + x: + input matrix + n: + Specifies the number of elements of x to be used + dim: + Specifies the dimention of the matrix along which the FFT is performed + + + + + Description + +This is an Octave function. +The FFT is calculated along the first non-singleton dimension of the array. Thus, FFT is computed for each column of x. + + +n is an integer specifying the number of elements of x to use. If n is larger than dimention along. which the FFT is calculated, then x is resized and padded with zeros. +Similarly, if n is smaller, then x is truncated. + + +dim is an integer specifying the dimension of the matrix along which the FFT is performed. + + + + + Examples + + + diff --git a/help/en_US/fft21.xml b/help/en_US/fft21.xml new file mode 100644 index 0000000..eccf719 --- /dev/null +++ b/help/en_US/fft21.xml @@ -0,0 +1,68 @@ + + + + + + + + fft21 + Calculates the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform algorithm. + + + + + Calling Sequence + + fft2 (A, m, n) + fft2 (A) + + + + + Parameters + + A: + input matrix + m: + number of rows of A to be used + n: + number of columns of A to be used + + + + + Description + +This is an Octave function. +It performs two-dimentional FFT on the matrix A. m and n may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros. +If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately. + + + + + Examples + + + diff --git a/help/en_US/fftw1.xml b/help/en_US/fftw1.xml new file mode 100644 index 0000000..482f5df --- /dev/null +++ b/help/en_US/fftw1.xml @@ -0,0 +1,94 @@ + + + + + + + + fftw1 + Manage FFTW wisdom data. + + + + + Calling Sequence + + method = fftw ("planner") + fftw ("planner", method) + wisdom = fftw ("dwisdom") + fftw ("dwisdom", wisdom) + fftw ("threads", nthreads) + nthreads = fftw ("threads") + + + + + Parameters + + + + + + Description + +This is an Octave function. +Wisdom data can be used to significantly accelerate the calculation of the FFTs, but implies an initial cost in its calculation. When the FFTW libraries are initialized, they read a system wide wisdom +file (typically in /etc/fftw/wisdom), allowing wisdom to be shared between applications other than Octave. Alternatively, the fftw function can be used to import wisdom. For example, + + +wisdom = fftw ("dwisdom") +will save the existing wisdom used by Octave to the string wisdom. This string can then be saved to a file and restored using the save and load commands respectively. This existing wisdom can be re +imported as follows + + +fftw ("dwisdom", wisdom) +If wisdom is an empty string, then the wisdom used is cleared. + + +During the calculation of Fourier transforms further wisdom is generated. The fashion in which this wisdom is generated is also controlled by the fftw function. There are five different manners in which +the wisdom can be treated: + + +"estimate" +Specifies that no run-time measurement of the optimal means of calculating a particular is performed, and a simple heuristic is used to pick a (probably sub-optimal) plan. The advantage of this method +is that there is little or no overhead in the generation of the plan, which is appropriate for a Fourier transform that will be calculated once. + + +"measure" +In this case a range of algorithms to perform the transform is considered and the best is selected based on their execution time. + + +"patient" +Similar to "measure", but a wider range of algorithms is considered. + + +"exhaustive" +Like "measure", but all possible algorithms that may be used to treat the transform are considered. + + +"hybrid" +As run-time measurement of the algorithm can be expensive, this is a compromise where "measure" is used for transforms up to the size of 8192 and beyond that the "estimate" method is used. + + +The default method is "estimate". The current method can be queried with + + +method = fftw ("planner") +or set by using + + +fftw ("planner", method) + + + diff --git a/help/en_US/fht.xml b/help/en_US/fht.xml new file mode 100644 index 0000000..06311a3 --- /dev/null +++ b/help/en_US/fht.xml @@ -0,0 +1,23 @@ + + + + + + + + fht + funcprot(0); + + + diff --git a/help/en_US/freqs.xml b/help/en_US/freqs.xml new file mode 100644 index 0000000..258f280 --- /dev/null +++ b/help/en_US/freqs.xml @@ -0,0 +1,61 @@ + + + + + + + + freqs + Compute the s-plane frequency response of the IIR filter. + + + + + Calling Sequence + + h = freqs (b, a, w) + + + + + Parameters + + b: + vector containing the coefficients of the numerator of the filter. + a: + vector containing the coefficients of the denominator of the filter. + w: + vector containing frequencies + + + + + Description + +This is an Octave function. +It computes the s-plane frequency response of the IIR filter B(s)/A(s) as H = polyval(B,j*W)./polyval(A,j*W). +If called with no output argument, a plot of magnitude and phase are displayed. + + + + + Examples + + + diff --git a/help/en_US/fwht.xml b/help/en_US/fwht.xml new file mode 100644 index 0000000..7b62250 --- /dev/null +++ b/help/en_US/fwht.xml @@ -0,0 +1,23 @@ + + + + + + + + fwht + + + + diff --git a/help/en_US/hilbert1.xml b/help/en_US/hilbert1.xml new file mode 100644 index 0000000..5bfa3d2 --- /dev/null +++ b/help/en_US/hilbert1.xml @@ -0,0 +1,23 @@ + + + + + + + + hilbert1 + + + + diff --git a/help/en_US/hurst.xml b/help/en_US/hurst.xml new file mode 100644 index 0000000..85f3cc9 --- /dev/null +++ b/help/en_US/hurst.xml @@ -0,0 +1,23 @@ + + + + + + + + hurst + + + + diff --git a/help/en_US/idct1.xml b/help/en_US/idct1.xml new file mode 100644 index 0000000..c43eb1c --- /dev/null +++ b/help/en_US/idct1.xml @@ -0,0 +1,23 @@ + + + + + + + + idct1 + funcprot(0); + + + diff --git a/help/en_US/idct2.xml b/help/en_US/idct2.xml new file mode 100644 index 0000000..0e7fcdc --- /dev/null +++ b/help/en_US/idct2.xml @@ -0,0 +1,23 @@ + + + + + + + + idct2 + funcprot(0); + + + diff --git a/help/en_US/idst1.xml b/help/en_US/idst1.xml new file mode 100644 index 0000000..74a9f0e --- /dev/null +++ b/help/en_US/idst1.xml @@ -0,0 +1,23 @@ + + + + + + + + idst1 + funcprot(0); + + + diff --git a/help/en_US/ifft1.xml b/help/en_US/ifft1.xml new file mode 100644 index 0000000..9d92e8e --- /dev/null +++ b/help/en_US/ifft1.xml @@ -0,0 +1,81 @@ + + + + + + + + ifft1 + Calculates the inverse discrete Fourier transform of a matrix using Fast Fourier Transform algorithm. + + + + + Calling Sequence + + ifft (x, n, dim) + ifft (x, n) + ifft (x) + + + + + Parameters + + x: + input matrix + n: + Specifies the number of elements of x to be used + dim: + Specifies the dimention of the matrix along which the inverse FFT is performed + + + + + Description + +This is an Octave function. + + + + + Description + +This is an Octave function. +The inverse FFT is calculated along the first non-singleton dimension of the array. Thus, inverse FFT is computed for each column of x. + + +n is an integer specifying the number of elements of x to use. If n is larger than dimention along. which the inverse FFT is calculated, then x is resized and padded with zeros. +Similarly, if n is smaller, then x is truncated. + + +dim is an integer specifying the dimension of the matrix along which the inverse FFT is performed. + + + + + Examples + + + diff --git a/help/en_US/ifft21.xml b/help/en_US/ifft21.xml new file mode 100644 index 0000000..fed0499 --- /dev/null +++ b/help/en_US/ifft21.xml @@ -0,0 +1,68 @@ + + + + + + + + ifft21 + Calculates the inverse two-dimensional discrete Fourier transform of A using a Fast Fourier Transform algorithm. + + + + + Calling Sequence + + ifft2 (A, m, n) + ifft2 (A) + + + + + Parameters + + A: + input matrix + m: + number of rows of A to be used + n: + number of columns of A to be used + + + + + Description + +This is an Octave function. +It performs inverse two-dimensional FFT on the matrix A. m and n may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros. +If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately. + + + + + Examples + + + diff --git a/help/en_US/ifht.xml b/help/en_US/ifht.xml new file mode 100644 index 0000000..2d9ead3 --- /dev/null +++ b/help/en_US/ifht.xml @@ -0,0 +1,23 @@ + + + + + + + + ifht + funcprot(0); + + + diff --git a/help/en_US/ifwht.xml b/help/en_US/ifwht.xml new file mode 100644 index 0000000..37903a0 --- /dev/null +++ b/help/en_US/ifwht.xml @@ -0,0 +1,23 @@ + + + + + + + + ifwht + + + + diff --git a/help/en_US/invfreq.xml b/help/en_US/invfreq.xml new file mode 100644 index 0000000..2f10f8e --- /dev/null +++ b/help/en_US/invfreq.xml @@ -0,0 +1,23 @@ + + + + + + + + invfreq + + + + diff --git a/help/en_US/invfreqs.xml b/help/en_US/invfreqs.xml new file mode 100644 index 0000000..a35a2d6 --- /dev/null +++ b/help/en_US/invfreqs.xml @@ -0,0 +1,78 @@ + + + + + + + + invfreqs + Fit filter B(s)/A(s)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. + + + + + Calling Sequence + + [B,A,C] = invfreqs(H,F,nB,nA,W,iter,tol,trace) + [B,A,C] = invfreqs(H,F,nB,nA,W) + [B,A,C] = invfreqs(H,F,nB,nA) + + + + + Parameters + + H: + desired complex frequency response. + F: + frequency (must be same length as H). + nB: + order of the numerator polynomial B. + nA: + order of the denominator polynomial A. + W: + vector of weights (must be same length as F). + + + + + Description + +This is an Octave function. +Fit filter B(s)/A(s)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +Optionally, the fit-errors can be weighted vs frequency according to the weights W. +Note: all the guts are in invfreq.m + + + + + Examples + + + diff --git a/help/en_US/invfreqz.xml b/help/en_US/invfreqz.xml new file mode 100644 index 0000000..188595a --- /dev/null +++ b/help/en_US/invfreqz.xml @@ -0,0 +1,76 @@ + + + + + + + + invfreqz + Fit filter B(z)/A(z)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. + + + + + Calling Sequence + + [B,A,C] = invfreqz(H,F,nB,nA,W,iter,tol,trace) + [B,A,C] = invfreqz(H,F,nB,nA,W) + [B,A,C] = invfreqz(H,F,nB,nA) + + + + + Parameters + + H: + desired complex frequency response. + F: + frequency (must be same length as H). + nB: + order of the numerator polynomial B. + nA: + order of the denominator polynomial A. + W: + vector of weights (must be same length as F). + + + + + Description + +This is an Octave function. +Fit filter B(z)/A(z)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +Optionally, the fit-errors can be weighted vs frequency according to the weights W. +Note: all the guts are in invfreq.m + + + + + Examples + + + diff --git a/help/en_US/kaiserord.xml b/help/en_US/kaiserord.xml new file mode 100644 index 0000000..8a76cf7 --- /dev/null +++ b/help/en_US/kaiserord.xml @@ -0,0 +1,84 @@ + + + + + + + + kaiserord + Return the parameters needed to produce a filter of the desired specification from a Kaiser window. + + + + + Calling Sequence + + [n, Wn, beta, ftype] = kaiserord (f, m, dev, fs) + […] = kaiserord (f, m, dev, fs) + […] = kaiserord (f, m, dev) + + + + + Parameters + + f: + Pairs of frequency band edges. + m: + Magnitude response for each band. + dev: + Deviation of the filter. + fs: + Sampling rate. + + + + + Description + +This is an Octave function. +The vector f contains pairs of frequency band edges in the range [0,1]. The vector m specifies the magnitude response for each band. The values of m must be zero for all stop bands and must have the +same magnitude for all pass bands. The deviation of the filter dev can be specified as a scalar or a vector of the same length as m. The optional sampling rate fs can be used to indicate that f is in +Hz in the range [0,fs/2]. + + +The returned value n is the required order of the filter (the length of the filter minus 1). The vector Wn contains the band edges of the filter suitable for passing to fir1. The value beta is the +parameter of the Kaiser window of length n+1 to shape the filter. The string ftype contains the type of filter to specify to fir1. + + +The Kaiser window parameters n and beta are computed from the relation between ripple (A=-20*log10(dev)) and transition width (dw in radians) discovered empirically by Kaiser: + + + + +/ 0.1102(A-8.7) A > 50 +beta = | 0.5842(A-21)^0.4 + 0.07886(A-21) 21 <= A <= 50 +\ 0.0 A < 21 + + +n = (A-8)/(2.285 dw) + + + + + Examples + + + diff --git a/help/en_US/master_help.xml b/help/en_US/master_help.xml index ab18d66..3fff4c5 100644 --- a/help/en_US/master_help.xml +++ b/help/en_US/master_help.xml @@ -1,16 +1,18 @@ -<<<<<<< HEAD + + + @@ -19,23 +21,31 @@ + + + + + + + + @@ -43,13 +53,19 @@ + + + + + + @@ -58,8 +74,10 @@ + + @@ -69,13 +87,25 @@ + + + + + + + + + + + + @@ -85,6 +115,7 @@ + @@ -104,13 +135,16 @@ + + + @@ -131,13 +165,17 @@ + + + + @@ -152,10 +190,14 @@ + + + + @@ -164,14 +206,20 @@ + + + + + + @@ -187,209 +235,20 @@ + + + + + + -======= - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ->>>>>>> 9f6962b19c4a5fa76f7525a72faabb1b754712ad ]> FOSSEE Signal Processing Toolbox -<<<<<<< HEAD FOSSEE Signal Processing Toolbox &a81320b4221ec0c937db241f3f09761d9; &a96531f053d1d3aca0c8998446e7ba88a; &a44e8c63cbbbfce58373a4d528cc59bda; &a44baa1c529b4c2034108849f08147667; +&a80dc2d1be7f85c4fdeda3627eeaeba5b; &a64ecf6e721160dfb163621e4a3a00d0f; +&aa8ae4694cb3e88d729d68b31dffb8be2; &aff6d91054f11396fab566c3b7097e225; &a8128572f33478b9c8c764de03cf89fc4; &a782c9cd4d7dad9d24a672148080e384c; &a0be563c94e1e42b7735567091463661e; +&a8b11798eda410c3ebbbdf55e6d9f64c6; &a4b0f0cf49b01fcbb7aedef41c40d0e25; &a8ee66630c6b42252d90d4304e8af282c; &a1c12c9e7e5cac759289269fdedd8905c; @@ -424,23 +285,31 @@ &a6f9d33b92c0e5f71e2f83bffbea97f58; &a62ed1363186685b47656c8a5790efa44; &a9558e8614d7f439a08d4332c74eb1118; +&a3090cfb96d2431a77d3573f5c22eba2c; &a7c579640b7fb009b1613e4a9e6a3acb6; &aec6a38aa439b8a6c26a7d2ada787095f; +&aad06f15b8c56fd06a63ed4c93a7b17de; &a3c7785a5dca1c2ff0bcb54385411d26c; &aa7ee14bf521256b990217ff8fdfd1c4f; +&aae1630f64e7d6887cfb5f4801b70358c; +&aa2b1694a7963cd81b95b1b3d497d01c9; &adbfd2762e8949c7d9277a546b59fee44; +&af4a3555ae3fc9828d4f5bcfe3c082bae; &a92cf35397a3f0f935f69fa0c6b980916; &a144520c3e437156f61bc5c85aff56360; &aab22c36671d7c1054db5e4e91ff34ca9; &a38bcbc23ee3dff9a39209eed62398675; &a07382031f7c37c171b8f596adb3241ae; &aa2141aba98a93cb5ebec123c977cb0d4; +&a05e673d1d3c435a4f72f7a803fac3c4c; &a9aa47349954b7dc555e77d5c07750bc6; &ad68b63f69616e4938c5df2b8f4a6ea29; &a832131d9fca85cf0fc67ebaa7860a244; &ab9c573f1ed86c7c9107542791f010509; +&a11375970432ad3165248b0408d73a6f9; &a3dd640289cc33aa91c9b93ef38ae3588; &ac80b8635538da5f44037be6c1355e0cd; +&ae086fe3d5e719b7163fe6bbe6379a30b; &ab46eb5d7f458e4c97c25dc101934e55a; &a9a3d5508d4be2587fffb07c4fea873a1; &a9c0646c3d801e6dbf40cb2bfd0f48184; @@ -448,13 +317,19 @@ &ad910f20157813b38f3dd0037664fab4d; &a9f1a602ceb9c4f04cdb362869689ad5b; &a34c0df6ea3acf72e8be0c3aadf06b3f9; +&ac6f45dfd4ee34be9be8deaf068a03d3a; &a6c480dc7966fa1256fccca6a2a607ea5; &ad43a01be488312784bce7fa20f5fda45; +&a33f68328b4f96f612655c918690757cb; &a2475a47e5ba8f7128e2b8d07a807d1b7; &a6a5628da371f54e68e600dc33be952e8; &abb6a4d7c3064262f17ab739f011c3a4a; &a448d7adf3da3286f51f6a94bea63663d; +&aac9ca99701b69583c37e4f90cc6f2b31; +&a3192e9ff3cd44b40b7e9390bfc464f1f; &a3d7d87fbbc65bfd3e6fdf8bc8f48be6e; +&acb27ed052fb6279db1c0a646bd336d1f; +&ae5182eb8e46dfc6f361e8273d1e85e8e; &afe92108055741cc536bf66798f641a5e; &a6da3c55e120d9ad84b38f937a1440569; &a1cb4e24a853af62bb07857799af1b5a9; @@ -463,8 +338,10 @@ &a1653c1101bb7f7f90ad5c793094c3011; &a9cd28a49bceabf9d6a5ae48efc168636; &ac2d9926417a46b72d2c3ce6be1f719c3; +&a097842abc76805ff3b2f72a2c9c8205c; &a77e06b63ac5f175d8106b4e43014b6da; &a33f0777e49b0d0506ae19c244104c179; +&aeca2a7e1b17564f24ae127e8d114f3d8; &af7def142da08407766b1ec9a0a940863; &a1c243694467789e5c3b41db26ea136b8; &aed386f5f60012f9148f8a7239f8922dd; @@ -474,13 +351,25 @@ &ac9b5a24449247693afe12d4a0a89cb29; &a74b3b666e222dd6fdc8cfa967a275919; &a58a65df48c1f5e0fb455ce5ae740b4d2; +&a4c00e2caafdf45e6fbec22940c767231; +&ae59ce3d617ae3e103df7d517bac2744f; &a460a1e1ff357ce3430e9e399628fa02c; +&a57e47f4f26e6dd49cc38dd803fa42580; +&a59d4bef3e5e6c1d6031b4045141c20e2; +&a0176b20a1535e927094297f2d6b381fb; +&aabb5515641d926736c17451d536a457e; +&a330e5720762d9a372a40e1ee1be0ee8b; +&a0d171476d96c87a3de7983184b9176d0; +&abe76e908f76eb5c6710cc13f1acf2bd6; &a62cc46ed8d95b0239e4df0552679ea1d; &aa188901e0117ab660ea457598988f6c9; &a44f003ed5aa29cbfd3cefa414436788d; &a7524abc02ec73e4e52e0aa32f70a48c7; &a49a9e3c3edb127efa41460df3ae0b246; &ad0ea8d615c238f00d56a94edffed11d2; +&ac7930d64830c9666cfb944d836f4d775; +&abaa22bc1877bc9d4131223d13b402b60; +&a125fdeea0240f72f7ba6ec95fc53fad0; &aa5fea5e37e2362f8cc508f80fb61e1a4; &a6738f22afa4d9b2fec50f876ed64f1c3; &aa81b94c5cbb0d9bdbcf323aa37a1c434; @@ -490,6 +379,7 @@ &a7b4993c8297a6696cc70e771f9914a77; &ad9c3b7bc150ac1452720b8ffe09e98b6; &a529cf543ec9712c89d8d996913ef7ec1; +&a060d37eea26c9ff3b60ac48f121b2205; &a7661f5463a17550a94594b08eb000091; &a8d87a3061cb6a7f81eb9a5d01ec17708; &ab7c7ba24125e211f115a6bc397dcc611; @@ -509,13 +399,16 @@ &a14172f88fa51c76d8e3cd44b7ff9da3b; &aa1bdfdcec9d37ca8fde8f1a5eccf335e; &ae3e1f82c6bb377a1b604310d59879657; +&a7c279b72cef3871697c360725d1aca0f; &ac7f0bf1229be88336dd19bec79f8592e; &a533f1756737a76c7ebbf4582981dc178; &a37a0158758c25b87b25ccc1aee6a119c; +&af859fa6921261df3081e38479f8231eb; &ad89e66ee263fe203686f31a3eab8e64d; &aa5c4ca6eec759599ed43523a388348ad; &a200605149beb0f3b5d8a88a3d53b2f71; &ad6130e215a78d84270aafbc379fbb725; +&a66b94edea7efc8ac92b9ea88227e8c4a; &a29bbe646f6f6d50c069111ae091e7d36; &a4c3953ad493b988d8a2031523ffb8306; &a57cdc6361f8d7ec335fee1025821ddbf; @@ -536,13 +429,17 @@ &ad0b592048d2a5108ef1573e46915e2b9; &a209518e7ca8192917e531c32767128f4; &a45703911489b3f971198165f76d6d8c0; +&ab09b38565f83974426d349f1330ee626; +&ab6965276d6abc03dba25337d98f06a9b; &a9a588475c9fdfec3b0d524d2f91956a1; &a6a345bdf977080572f9bb157e316fa56; &adfc7a13f2757703644a280fda363f5d3; &a84d04841d921ac252697bd6d913f6e07; +&aba910d84a7b8dc5c58261362595d6a6f; &adb76827a846fe886ed6ce90b95f07d8f; &a040edc92d4048494ec65abb4c47a6e7c; &a84e9fc45acaeb7c1afa74420873f7b8b; +&a992cb0804ac63bcee0241a7d3f625ac9; &afb654b0f7ed9a4d6af43c3042d878008; &aedffe76610b2bc050432fea9879d2c82; &a78b3ed60769c10149c518c3117b14fe5; @@ -557,10 +454,14 @@ &a58d8825cb2b40fb02d1fb623474b3680; &afe070e546eba011714d6130f15bf7eeb; &ade2e0f651396ca918685cd60ad2e1f69; +&a61a6017541d7986bc2fe01dea58f861d; &af670a413ac46b05b04fb1eeb295cc187; &a871ae6b17028eb52e68e6bc124576f0c; &af828ad07b10f88b94815cf6d13dcf2a8; &a6dfa16868c80a256207c2def9e0f68a6; +&a1cac6df59eacdeef9bebfaf8fdd4322a; +&a88faf3b43623f226cdade19a21c3b6cf; +&af4f643c0bd50a55c10e28d7089215e30; &a458311d776cf15b4ead98bf47848744e; &a0356f690ddd41c1bb4421b15c2e0fdc4; &a33cd8ef570f585eadb34a40825f2b396; @@ -569,14 +470,20 @@ &afb2aecd6bef384074ea28729e7e1fde8; &a43d84cf894173760ed78bcd0173e5eb1; &abd98a1a18a270aa31a679ba6e48a6f8c; +&adbd325d6129658aef1a1c44ebdfaf634; +&a6e52208f7cf5935ac4b2dbbaf19a6a8f; +&a3a436e475ddcbb6edb82e15c9ad4f910; &adfe42afbecc43cec13b71504e2ee9f7b; &ae42ba4458c126de0d0d8449858c32174; +&a286a5169d98da3bb93e5e169fc582493; &a45a0dbae444ccba87b80be7d73a9a317; &a2a3cdd1656da19c8bcccf108c810ed46; &ae8bb2ea49f71ca2170c7b25396b53c36; +&a61c1b23c2b8ad57c50ce79acde50c677; &a754944658572078c603d41eb799c03dc; &a16514a248c077408c45a820a305e5c12; &a596bc775e258db66e6a9361e23f6a110; +&a908bb8057a00d2c709d46a3911b0d4d8; &ae3ee0ed5769293d96b4e2e86059e914a; &a3db7534139a84881841b932fa2ec83d6; &ac4b200defab1e9badb41fc727f69d855; @@ -592,210 +499,19 @@ &a815233915f392f428567c0381e5ac245; &a8127816d1698afb2025103f44be38859; &a0a5ed325e4ef3aa7ba8d66ae953d9092; +&aca35ca9bbd1eb7284507f50f56a1947f; &a18288f217fcfa5b28647d2b86a3a288e; &aa10dc0e867636bb5905df2147e7fa8a1; &a739bb681c1778aebc6a112c9b4ebcc4c; &a974a3174dedaa833258ab42d577abd9d; +&ad226196ce2e896f6d2052cc004cac236; &a7d306b5dfd9ec60077d737d8a4a6b843; +&a8a74af8f737940c9fe7be0732e87ed26; +&a63ca6d1cb168f3cdb2f3f92defdb7694; &a383c86e12eaf73e96e722b32e61c3386; &aecd6b297822f6189d821d9ef476689d8; +&a6852d675894772d70b92036fdc80543c; +&a9c59e841b79fd8ce5d6e2521ae6b2347; &a38385ae55e569d27d4af576de7685f2d; -======= - -FOSSEE Signal Processing Toolbox -&a231328952124a7e187905e71aaf9cee0; -&acc27042e738d175d1131be40ac8443e4; -&a00c7c9f2a0021ff13869dce3b90df38c; -&a2801dc954ec6ac2e1c314367aab7316b; -&aa86636858e7127f17b93747fc8f3ec30; -&a2804cc9a113729444d60d8cf3c14b554; -&a78af20f681c48f8ec298b379b34418b7; -&af1b518d74e5b9c0251ecb1df257eb407; -&af8a337c857d4b373e49c0032acb1370f; -&a31f48c823b3b36a8c44e96ff54eaf66a; -&a4965260600d5ae3055dc940551b4155a; -&a203e8f0f36fcdb6d7dab204312a41134; -&a33562ce8ee2b64f5e49f771f94e64714; -&a2ead104a959d0030deacd8bfd726d641; -&affed76d132b047f7e7dd7feaf7460b96; -&a9a73fbe4c732d8d281a15b9c56b66cd7; -&af063a7c3d52b3fc249eccfea5477233a; -&ac13ce08d83a0b050bbcd34097be69474; -&a3ac1d95c0377fbd5021c9ab3878d3381; -&aad687051b3ff18c103250462607b8bfe; -&ae12b60324a0fd39a6eaeaa29154462d3; -&a67189797ee7307d2f12d2d9db1429d16; -&af57064694f5b9424a2fb945bab08663a; -&a788630ff50c6129a3217a8b029fdb706; -&ad67eb98c7a334e2ccd2584c52d1f7490; -&a9aaa53086cfad7fff7a9568a895c584e; -&a80fd0493bf42ae683bb78ef95ecc8ff1; -&a1dc032779f7ba8e8f69e8f79dfb144d5; -&a5bf1548e6f5419396992c7e5fee10e44; -&a675cd787aff166461d9e9da55d591875; -&adc56a73851265426ed0c3db40f3a0d2e; -&a3d40cac540363daecb58818938d2b1d3; -&abaaa2a634a57347cfaeb3f75cc42b298; -&ae8d01defeace3e366cfdce71da71d5e2; -&a438b318f3a65f8e10cb292c16ee48d3d; -&a012dc78292d46d1a6bfdd411607796ae; -&a4c9381ac38659e2e9ccdf89e9aec08f9; -&a732f6e560fa62dcfe2137f94ce0b812b; -&a8e9030fad0ea16388695b20a07e04334; -&a3ffbb42a185eaf6b62029b6efc883d6b; -&ac93a3534190eae2db767de3935ad4fbc; -&a52aa309fac8ef71cd8d143ac51969fe0; -&aa0ecb21a4fba74cd96dd91d64d4f13ef; -&ae7e31ef8153e0b43af5b7d3b54f281b8; -&a0d95063280ebe0c559bd51e94d6809cb; -&a528ea74a7c6d6e7453f0a50c2b96a9ee; -&ae0c094a4d283763517f2a9d8dc2d47dd; -&a093a9f733664f253ef62c57cbfd1f345; -&a0b5dd6bfc7c995741ff59cb1f2e6bd9d; -&a6f9f6be023cda42def4540ebe4a826ad; -&ab3a31ebfc4f38ef5c568256700871cf9; -&aaadfeefbe7128b3e19dfcf58d9259fba; -&a73e8c044770a7cfd905f857689a6baa1; -&a94e89cc06baa492675fb0ba33b84c454; -&a19950da21e14157b78311a84cf566c31; -&a997024f7f60a0e9b5b06fb25b4549196; -&a5b1b81f5a27ba264b58d0ede7bf40d6e; -&aaa8fd7d64f02100f0ff4b9f5a601b502; -&a5a10dacc8f7724140837e716eefea546; -&a241d399410079c666c88bab68b4bd8b6; -&a6091479f1738a3f05872855ff81f767e; -&a79d0e19a419a4da0e9852a883c56e875; -&acbf561fbe774483d5bdd6bb94f356c92; -&a829161f2b17c647cab27ce7e4e177861; -&a09f64c6e5d7a6e94067ecb6f99796457; -&a277e25e2845fbbffbb98cb9bd813d43e; -&a89a8d615b106b54285bf3493164dde99; -&a564da052a4377e3262d3e2eaaff74169; -&a056e2f09f5221e8999a0fea1c1fa878d; -&a9142e379fc897ce07ddb4601b5f6eff9; -&adc184a6cbbaa2bb5ce1233a789ac1f35; -&a05f89038eb00b07e70e0873d8d1dfdbd; -&a2fb2ab4d09d36ef1d84d3666c77ea926; -&a3d73ca698d63b8e1aca3d442d62d67c8; -&a9f42719de3232f6757f8f9645f04d2ba; -&aa2dde2bdf03f823c2c8bcbe7c32ac6f5; -&a1341fabc85cc66d9215f09a3b3389f21; -&a9582da81a2996f4949f3a56504ac7af0; -&af06621ea64b7432870e0c9de816a7a3f; -&aedaf12b58709e4d66d9594c045e7fab9; -&a076a06248e94759c2531feb6af82b4b2; -&a550cb394018ff7036f3bf7ed85cd894a; -&aadd3778bbb3c69186062e83df88617b6; -&ae880c6aad471ddeadec92a73990a8916; -&a3a1de36d214f8b24968c347990a780ca; -&afd0accae740fccac83b6e58da7ad7f67; -&aaff1fbd30d203394a0065360948cb552; -&a64409832c5b89c298638be3ae481e2db; -&a94b0fd913cff757ba932421487806ce2; -&a501538e66b60a9dad666d8feebebc808; -&a2cd55936714d73ab7cfc5b191e1ab310; -&a5100d9ea14ecae777adf29449f8326bd; -&a5d96b63e9d96e401c886dc2e59f352ae; -&a7eb314d0aac7fe50a8b374d1fe09224a; -&a5f1fdcf4bd80a0fdc97b1a66dc3d6126; -&aa6381ef62e04401a281532a2b26866e4; -&ab54549e25f72917f5984976326446806; -&aad2ae34d6eb1330043839076bfe50370; -&a2cb9870e7f3797bd8079af0d6bd72c2a; -&a6f84b9f7d14410ce7b79c7e06629063c; -&ab20a31499c13238dfad5e6a9a47494a8; -&af78d47b6f1d4f40097f16df906159928; -&a0d9a41d49a4663bd5ae6e17bce7f3f9d; -&ae90b90188af214c9b4bfbfd5186a57e3; -&ab8ccec6c3405c19a470f1f3ca558ad07; -&a454451daa892c02d56805334a51be93f; -&ac1059f65770cbb8f7e8f63040d89272e; -&a66543787f73f1ce1e7be63649b30a3c7; -&acc1420fa4419b0f270ad3f8d342a3462; -&a995c78b83fbbea551450e7012f13797f; -&a0442ccd02553bee97fde66f2838895ba; -&a87c50c8b5be2390300fbfe46bb1ca120; -&a02d1bdbd42659a3e4019d0498b14f321; -&a9d6134bc5259cb5aeb088a6de56a1ec1; -&aa37bf7c43823e017babd5e030e712970; -&a9781f4c56bafacf94214fc66102348a2; -&a169ef193b097a09b6d3ffec52f5f1485; -&acc6ca2c4223c6eb2605224fd487187d2; -&a29996fb75db3d782680d4ca3f521df92; -&afd9713fe61540255e892066b5137e59d; -&aa980f3c9624ae005414c12d7a877509e; -&a7d2647c034f43a9251e2db288609a1b7; -&a882da254da001f466eb31bbd41361a56; -&a9bbded342cd4ef28c778daaa3422204c; -&a19ce5d9910772e73e9e89012e50e7b00; -&a345e02cd34c617dbd3421a2105685535; -&a6801e6f009157396cae1b490394153e1; -&aaa07642adb4af69e9b9b0e253ee2e09e; -&a822b7b0a550b48a6c61f5d82f34fb2a6; -&a0fb1810de5f83ec9ef3044ef50bea460; -&a3be9e2c9b768acd0dd7364298b0bfee5; -&a29e745c3794d5108d4133e8779cc61f7; -&ae7f0ecf1810506f8d5417e97c2d11615; -&af8807cd3a5d1b02d4a288e796360fe2a; -&a29e9c3d00fcd3169bd8354488b4977cb; -&ad7cebbbaa3e2ced9e0c9182662c86b8a; -&ac5914c0be89a4c4439097765c0e7cecc; -&a6da361fad125fe561580436a66d9d7bc; -&ad2dfb1b46cc492f8d323e1b72dc22728; -&ab2e4570e0024f556a50f7fe8da8ba151; -&a04ef233b467060d4578b43b8971f38a3; -&ac097cbdcb4b28badcff3616e968aa3f7; -&a6352349298514ffd575c2367e13c14b3; -&a9ab8a24e5b3bc5753cc3cb6cb6de74b8; -&a299d9f2b3a06d39e69e093804117f40f; -&a712e3325216084f0ff29f772a41abce2; -&a4ce9f761027a046b75fe3e665393082f; -&a06bd86308806c0555e5fd4bf92e2b769; -&ae3cd6a4ac731b860300da199c84af7a9; -&a492bcb2ea4cbe2a4a1f7c0a6d0054c29; -&acfde8a4181328405e0f648d4aa9b843b; -&ab3cbb2aaaf730a032674d18bc031731a; -&a877d0d12418f2bbc520a5d1403d62a32; -&af5fec193153f2dad9515f9b81d500410; -&aa6b76788e36e0d6d7d2c1ec5d1604798; -&aea7524fc34de97fc745d01ae564677a1; -&a10a36960bde6b0639f4f358216f704cf; -&a5feba38524659afdbe4015b645b45f4e; -&a862e51cacd34ba79921d6ba8fadc2e3d; -&ab3f2bf2ab34afc8e14ff23ada59fb889; -&ad5fcb6a854ea4ab1a826c2cfe506037e; -&ad6371d5f083f4ac4fd57fa369e3cce7f; -&a6d63448e238679b1ffcf82bb12f3ab56; -&a22391101c208e4851f12b2d38b1c940b; -&a55d26e66ea1393dcf99b7df5ba827b79; -&a4d46b917ce6f500dce168ee18a1d17e6; -&a1456cb0354e92a694fa9311ee5362daf; -&a74b148e7e471bd9f170cd4dc3087d2c9; -&a243b79cdb976d4f432450ea744ca236c; -&a9187ccad1c55b5cd1a5a900b17f2104b; -&a805a0ed4cae04e01f29ecf5f82345622; -&a6e3552f90470c430b16dca28da599068; -&aff0a00518280d05c9d58a7de46b1b160; -&a5f191b2f9a255115bd43ce5e8c9dfe46; -&ab455e53fbe01264634cd4b2a4eb4c907; -&af62b68dd386718f8d27cb4d8364b8335; -&ad88190c86ecf59da91f5e21feb3a23c1; -&a735fd0a0700e104dbe5abbcd22ab616d; -&a378bace2a9b27a9198f9ffc3ba4efcb2; -&a64dae20703f14187621c3e22fca1ebe9; -&ac34fae293643ed52873e880dddf91bc1; -&a97101bd7eb46f1029e6ea2a054d405ac; -&aab35d1b77962f2054fd115ad6f8eb120; -&a1d535975c3fb7e7d8a0f9658e1c0f6c0; -&a091c9c305748e84d41eca16f78e2995f; -&aee101979a880a08e0a3c6cdbd958bdf8; -&a08e5aa34c91e6ebaba8fc63e3af9fe31; -&a181e55fa472ec1667172b73625f1b776; -&a4a8f4d8bf9f98af1fc99ba9328aa4a50; -&a812d9c22a396a5551693bb4d6dcae5b8; -&a07861a28f3bed2170e83949b6e2c3809; -&a99676709afd29b9c0701a4ca0e97365e; -&a61b6ccda9c51a7fb92674a98fd9f358a; ->>>>>>> 9f6962b19c4a5fa76f7525a72faabb1b754712ad diff --git a/help/en_US/ncauer.xml b/help/en_US/ncauer.xml new file mode 100644 index 0000000..a9395af --- /dev/null +++ b/help/en_US/ncauer.xml @@ -0,0 +1,71 @@ + + + + + + + + ncauer + Analog prototype for Cauer filter. + + + + + Calling Sequence + + [Zz, Zp, Zg] = ncauer(Rp, Rs, n) + [Zz, Zp] = ncauer(Rp, Rs, n) + Zz = ncauer(Rp, Rs, n) + + + + + Parameters + + n: + Filter Order + Rp: + Peak-to-peak passband ripple + Rs: + Stopband attenuation + + + + + Description + +This is an Octave function. +It designs an analog prototype for Cauer filter of nth order, with a Peak-to-peak passband ripple of Rp and a stopband attenuation of Rs. + + + + + Examples + + + diff --git a/help/en_US/pburg.xml b/help/en_US/pburg.xml new file mode 100644 index 0000000..3e5f703 --- /dev/null +++ b/help/en_US/pburg.xml @@ -0,0 +1,71 @@ + + + + + + + + pburg + Calculate Burg maximum-entropy power spectral density. + + + + + Calling Sequence + + [psd,f_out] = pburg(x,poles,freq,Fs,range,method,plot_type,criterion) + All but the first two arguments are optional and may be empty. + + + + + Parameters + + x: + [vector] sampled data + poles: + [integer scalar] required number of poles of the AR model + freq: + [real vector] frequencies at which power spectral density is calculated [integer scalar] number of uniformly distributed frequency values at which spectral density is calculated. [default=256] + Fs: + [real scalar] sampling frequency (Hertz) [default=1] + range: + 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum. 'whole', 'twosided' : frequency range of the spectrum is -sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'. + method: + 'fft': use FFT to calculate power spectral density. 'poly': calculate spectral density as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2. + plot_type: + 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db' specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. + criterion: + [optional string arg] model-selection criterion. Limits the number of poles so that spurious poles are not added when the whitened data has no more information in it (see Kay & Marple, 1981). Recognized values are 'AKICc' -- approximate corrected Kullback information criterion (recommended), 'KIC' -- Kullback information criterion 'AICc' -- corrected Akaike information criterion 'AIC' -- Akaike information criterion 'FPE' -- final prediction error" criterion The default is to NOT use a model-selection criterion. + + + + + Description + +This function is being called from Octave +This function is a wrapper for arburg and ar_psd. +The functions "arburg" and "ar_psd" do all the work. +See "help arburg" and "help ar_psd" for further details. + + + + + Examples + + + diff --git a/help/en_US/pei_tseng_notch.xml b/help/en_US/pei_tseng_notch.xml new file mode 100644 index 0000000..a2b1f37 --- /dev/null +++ b/help/en_US/pei_tseng_notch.xml @@ -0,0 +1,66 @@ + + + + + + + + pei_tseng_notch + + + + + + Calling Sequence + + [b, a] = pei_tseng_notch (frequencies, bandwidths) + b = pei_tseng_notch (frequencies, bandwidths) + + + + + Parameters + + frequencies: + filter frequencies + bandwidths: + bandwidths to be used with filter + + + + + Description + +This is an Octave function. +It return coefficients for an IIR notch-filter with one or more filter frequencies and according bandwidths. The filter is based on a all pass filter that performs phasereversal at filter frequencies. +This leads to removal of those frequencies of the original and phase-distorted signal. + + + + + Examples + + + diff --git a/help/en_US/pyulear.xml b/help/en_US/pyulear.xml new file mode 100644 index 0000000..87171cd --- /dev/null +++ b/help/en_US/pyulear.xml @@ -0,0 +1,51 @@ + + + + + + + + pyulear + + + + + + Calling Sequence + + [psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type) + All but the first two arguments are optional and may be empty. + + + + + Parameters + + x: + [vector] sampled data + poles: + [integer scalar] required number of poles of the AR model + freq: + [real vector] frequencies at which power spectral density is calculated [integer scalar] number of uniformly distributed frequency values at which spectral density is calculated. [default=256] + Fs: + [real scalar] sampling frequency (Hertz) [default=1] + range: + 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum. 'whole', 'twosided' : frequency range of the spectrum is -sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'. + method: + 'fft': use FFT to calculate power spectral density. 'poly': calculate spectral density as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2. + plot_type: + 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db' specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. + + + diff --git a/help/en_US/qp_kaiser.xml b/help/en_US/qp_kaiser.xml new file mode 100644 index 0000000..005f11a --- /dev/null +++ b/help/en_US/qp_kaiser.xml @@ -0,0 +1,64 @@ + + + + + + + + qp_kaiser + Computes a finite impulse response (FIR) filter for use with a quasi-perfect reconstruction polyphase-network filter bank. + + + + + Calling Sequence + + qp_kaiser (nb, at, linear) + qp_kaiser (nb, at) + + + + + Parameters + + nb: + Number of bands + at: + Attenuation + linear: + When not zero, minimum-phase calculation is omitted. + + + + + Description + +This is an Octave function. +This version utilizes a Kaiser window to shape the frequency response of the designed filter. Tha number nb of bands and the desired attenuation at in the stop-band are given as parameters. + + +The Kaiser window is multiplied by the ideal impulse response h(n)=a.sinc(a.n) and converted to its minimum-phase version by means of a Hilbert transform. + + + + + Examples + + + diff --git a/help/en_US/rceps.xml b/help/en_US/rceps.xml new file mode 100644 index 0000000..2a11479 --- /dev/null +++ b/help/en_US/rceps.xml @@ -0,0 +1,23 @@ + + + + + + + + rceps + + + + diff --git a/help/en_US/remez1.xml b/help/en_US/remez1.xml new file mode 100644 index 0000000..9656f5f --- /dev/null +++ b/help/en_US/remez1.xml @@ -0,0 +1,23 @@ + + + + + + + + remez1 + + + + diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS index 5485e84..fa8536e 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB index 90f6c0f..28b7820 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB and b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS index 1cfd696..6cdcd55 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS index 77ece74..5da6a95 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA index cdbc5eb..815b507 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA @@ -1,2 +1,2 @@ JavaSearch 1.0 -TMAP bs=2048 rt=1 fl=-1 id1=1968 id2=1 +TMAP bs=2048 rt=1 fl=-1 id1=2491 id2=1 diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP index 775f37b..58d9d44 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP and b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP differ diff --git a/help/en_US/scilab_en_US_help/jhelpmap.jhm b/help/en_US/scilab_en_US_help/jhelpmap.jhm index dc549a4..9f5590a 100644 --- a/help/en_US/scilab_en_US_help/jhelpmap.jhm +++ b/help/en_US/scilab_en_US_help/jhelpmap.jhm @@ -2,20 +2,19 @@ -<<<<<<< HEAD -======= - ->>>>>>> 9f6962b19c4a5fa76f7525a72faabb1b754712ad + + + @@ -24,23 +23,31 @@ + + + + + + + + @@ -48,13 +55,19 @@ + + + + + + @@ -63,8 +76,10 @@ + + @@ -74,13 +89,25 @@ + + + + + + + + + + + + @@ -90,6 +117,7 @@ + @@ -109,13 +137,16 @@ + + + @@ -136,13 +167,17 @@ + + + + @@ -157,10 +192,14 @@ + + + + @@ -169,14 +208,20 @@ + + + + + + @@ -192,12 +237,18 @@ + + + + + + \ No newline at end of file diff --git a/help/en_US/scilab_en_US_help/jhelptoc.xml b/help/en_US/scilab_en_US_help/jhelptoc.xml index f1e0621..b84b3cd 100644 --- a/help/en_US/scilab_en_US_help/jhelptoc.xml +++ b/help/en_US/scilab_en_US_help/jhelptoc.xml @@ -2,20 +2,19 @@ -<<<<<<< HEAD -======= - ->>>>>>> 9f6962b19c4a5fa76f7525a72faabb1b754712ad + + + @@ -24,23 +23,31 @@ + + + + + + + + @@ -48,13 +55,19 @@ + + + + + + @@ -63,8 +76,10 @@ + + @@ -74,13 +89,25 @@ + + + + + + + + + + + + @@ -90,6 +117,7 @@ + @@ -109,13 +137,16 @@ + + + @@ -136,13 +167,17 @@ + + + + @@ -157,10 +192,14 @@ + + + + @@ -169,14 +208,20 @@ + + + + + + @@ -192,13 +237,19 @@ + + + + + + diff --git a/help/en_US/sftrans.xml b/help/en_US/sftrans.xml new file mode 100644 index 0000000..56aee48 --- /dev/null +++ b/help/en_US/sftrans.xml @@ -0,0 +1,100 @@ + + + + + + + + sftrans + Transform band edges of a generic lowpass filter (cutoff at W=1) represented in splane zero-pole-gain form. + + + + + Calling Sequence + + [Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop) + [Sz, Sp] = sftrans (Sz, Sp, Sg, W, stop) + [Sz] = sftrans (Sz, Sp, Sg, W, stop) + + + + + Parameters + + Sz: + Zeros. + Sp: + Poles. + Sg: + Gain. + W: + Edge of target filter. + stop: + True for high pass and band stop filters or false for low pass and band pass filters. + + + + + Description + +This is an Octave function. +Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros +individually. The following table summarizes the transformation: + + +Transform Zero at x Pole at x +---------------- ------------------------- ------------------------ +Low Pass zero: Fc x/C pole: Fc x/C +S -> C S/Fc gain: C/Fc gain: Fc/C +---------------- ------------------------- ------------------------ +High Pass zero: Fc C/x pole: Fc C/x +S -> C Fc/S pole: 0 zero: 0 +gain: -x gain: -1/x +---------------- ------------------------- ------------------------ +Band Pass zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl) +S^2+FhFl pole: 0 zero: 0 +S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C +S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2 +---------------- ------------------------- ------------------------ +Band Stop zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl) +S(Fh-Fl) pole: +-sqrt(-FhFl) zero: +-sqrt(-FhFl) +S -> C -------- gain: -x gain: -1/x +S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2 +---------------- ------------------------- ------------------------ +Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT) +2 z-1 pole: -1 zero: -1 +S -> - --- gain: (2-xT)/T gain: (2-xT)/T +T z+1 +---------------- ------------------------- ------------------------ + + +where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious +algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form: + + +H(S)=g prod(S-Xi)/prod(S-Xj) + + + + + Examples + + + diff --git a/help/en_US/sigmoid_train.xml b/help/en_US/sigmoid_train.xml new file mode 100644 index 0000000..07a86b7 --- /dev/null +++ b/help/en_US/sigmoid_train.xml @@ -0,0 +1,23 @@ + + + + + + + + sigmoid_train + funcprot(0); + + + diff --git a/help/en_US/sinetone.xml b/help/en_US/sinetone.xml new file mode 100644 index 0000000..c47964a --- /dev/null +++ b/help/en_US/sinetone.xml @@ -0,0 +1,23 @@ + + + + + + + + sinetone + + + + diff --git a/help/en_US/sinewave.xml b/help/en_US/sinewave.xml new file mode 100644 index 0000000..2c7b0fd --- /dev/null +++ b/help/en_US/sinewave.xml @@ -0,0 +1,23 @@ + + + + + + + + sinewave + + + + diff --git a/help/en_US/spectral_adf.xml b/help/en_US/spectral_adf.xml new file mode 100644 index 0000000..56e229a --- /dev/null +++ b/help/en_US/spectral_adf.xml @@ -0,0 +1,23 @@ + + + + + + + + spectral_adf + + + + diff --git a/help/en_US/spectral_xdf.xml b/help/en_US/spectral_xdf.xml new file mode 100644 index 0000000..dfb5da5 --- /dev/null +++ b/help/en_US/spectral_xdf.xml @@ -0,0 +1,23 @@ + + + + + + + + spectral_xdf + + + + diff --git a/help/en_US/spencer.xml b/help/en_US/spencer.xml new file mode 100644 index 0000000..1d1a1ff --- /dev/null +++ b/help/en_US/spencer.xml @@ -0,0 +1,23 @@ + + + + + + + + spencer + + + + diff --git a/help/en_US/stft.xml b/help/en_US/stft.xml new file mode 100644 index 0000000..5811a67 --- /dev/null +++ b/help/en_US/stft.xml @@ -0,0 +1,23 @@ + + + + + + + + stft + + + + diff --git a/help/en_US/synthesis.xml b/help/en_US/synthesis.xml new file mode 100644 index 0000000..03de9ff --- /dev/null +++ b/help/en_US/synthesis.xml @@ -0,0 +1,23 @@ + + + + + + + + synthesis + + + + diff --git a/help/en_US/tfestimate.xml b/help/en_US/tfestimate.xml new file mode 100644 index 0000000..06ed2dd --- /dev/null +++ b/help/en_US/tfestimate.xml @@ -0,0 +1,77 @@ + + + + + + + + tfestimate + + + + + + Calling Sequence + + tfestimate (x, y, window, overlap, Nfft, Fs, range) + [Pxx, freq] = tfestimate (…) + + + + + Parameters + + x: + Input. + y: + Output. + window: + [real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument. + overlap: + [real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 . + Nfft: + [integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently. + Fs: + [real scalar] sampling frequency (Hertz); default=1.0 + range: + 'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. 'whole', 'twosided' : frequency range of the spectrum is -Fs/2 to Fs/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'. + + + + + Description + +This function is being called from Octave. +Estimate transfer function of system with input x and output y. Use the Welch (1967) periodogram/FFT method. + + + + + Examples + + + diff --git a/help/en_US/wconv.xml b/help/en_US/wconv.xml new file mode 100644 index 0000000..acbf777 --- /dev/null +++ b/help/en_US/wconv.xml @@ -0,0 +1,64 @@ + + + + + + + + wconv + Performs 1D or 2D convolution. + + + + + Calling Sequence + + y = wconv (type, x, f) + y = wconv (type, x, f, shape) + + + + + Parameters + + type: + convolution type. + x: + Signal vector or matrix. + f: + FIR filter coefficients. + shape: + Shape. + + + + + Description + +This is an Octave function. +It performs 1D or 2D convolution between the signal x and the filter coefficients f. + + + + + Examples + + + diff --git a/help/en_US/xcorr1.xml b/help/en_US/xcorr1.xml new file mode 100644 index 0000000..b89de1a --- /dev/null +++ b/help/en_US/xcorr1.xml @@ -0,0 +1,81 @@ + + + + + + + + xcorr1 + Estimates the cross-correlation. + + + + + Calling Sequence + + [R, lag] = xcorr1 (X, Y, maxlag, scale) + [R, lag] = xcorr1 (X, Y, maxlag) + [R, lag] = xcorr1 (X, Y) + + + + + Parameters + + X: + [non-empty; real or complex; vector or matrix] data. + Y: + [real or complex vector] data. + maxlag: + [integer scalar] maximum correlation lag If omitted, the default value is N-1, where N is the greater of the lengths of X and Y or, if X is a matrix, the number of rows in X. + scale: + [character string] specifies the type of scaling applied to the correlation vector (or matrix). is one of: + + + + + Description + +This is an Octave function. +Estimate the cross correlation R_xy(k) of vector arguments X and Y or, if Y is omitted, estimate autocorrelation R_xx(k) of vector X, for a range of lags k specified by argument "maxlag". If X is a +matrix, each column of X is correlated with itself and every other column. + + +The cross-correlation estimate between vectors "x" and "y" (of length N) for lag "k" is given by + + +N +R_xy(k) = sum x_{i+k} conj(y_i), +i=1 + + +where data not provided (for example x(-1), y(N+1)) is zero. Note the definition of cross-correlation given above. To compute a cross-correlation consistent with the field of statistics, see xcov. + + + + + Examples + + + diff --git a/help/en_US/xcov1.xml b/help/en_US/xcov1.xml new file mode 100644 index 0000000..7a866bb --- /dev/null +++ b/help/en_US/xcov1.xml @@ -0,0 +1,23 @@ + + + + + + + + xcov1 + + + + diff --git a/help/en_US/yulewalker.xml b/help/en_US/yulewalker.xml new file mode 100644 index 0000000..c336879 --- /dev/null +++ b/help/en_US/yulewalker.xml @@ -0,0 +1,23 @@ + + + + + + + + yulewalker + + + + diff --git a/help/en_US/zp2ss.xml b/help/en_US/zp2ss.xml new file mode 100644 index 0000000..64b0594 --- /dev/null +++ b/help/en_US/zp2ss.xml @@ -0,0 +1,90 @@ + + + + + + + + zp2ss + Converts zeros / poles to state space. + + + + + Calling Sequence + + [a, b, c, d] = zp2ss (z, p, k) + [a, b, c] = zp2ss (z, p, k) + [a, b] = zp2ss (z, p, k) + a = zp2ss (z, p, k) + + + + + Parameters + + z: + Zeros + p: + Poles + k: + Leading coefficient + a: + State space parameter + a: + State space parameter + b: + State space parameter + c: + State space parameter + d: + State space parameter + + + + + Description + +This is an Octave function. +It converts zeros / poles to state space. + + + + + Examples + + + diff --git a/help/en_US/zp2tf.xml b/help/en_US/zp2tf.xml new file mode 100644 index 0000000..c9e16af --- /dev/null +++ b/help/en_US/zp2tf.xml @@ -0,0 +1,72 @@ + + + + + + + + zp2tf + Converts zeros / poles to a transfer function. + + + + + Calling Sequence + + [num, den] = zp2tf (z, p, k) + num = zp2tf (z, p, k) + + + + + Parameters + + z: + Zeros + p: + Poles + k: + Leading coefficient + Num: + Numerator of the transfer function + den: + Denomenator of the transfer function + + + + + Description + +This is an Octave function. +It converts zeros / poles to a transfer function. + + + + + Examples + + + -- cgit