diff options
Diffstat (limited to 'macros/schurrc.sci~')
-rw-r--r-- | macros/schurrc.sci~ | 49 |
1 files changed, 0 insertions, 49 deletions
diff --git a/macros/schurrc.sci~ b/macros/schurrc.sci~ deleted file mode 100644 index 71beb39..0000000 --- a/macros/schurrc.sci~ +++ /dev/null @@ -1,49 +0,0 @@ -//schurrc - Schur algorithm. -//K = SCHURRC(R) computes the reflection coefficients from autocorrelation vector R. If R is a matrix, SCHURRC finds coefficients for each column of R, and returns them in the columns of K. -//[K,E] = SCHURRC(R) returns the prediction error variance E. If R is a matrix, SCHURRC finds the error for each column of R, and returns them in the rows of E. -//Modified to match matlab i/p and o/p and handle exceptions -//Fixed bugs -//by Debdeep Dey -function [k,e] = schurrc(R) - narginchk(1,1,argn(2)); -if(type(R)==10) then - w=R; - [nr,nc]=size(R); - if(nr==1 & nc==1) then - R=ascii(R); - R=matrix(R,length(w)); - else - - R=ascii(R); - R=matrix(R,size(w)); - end - -end -if(type(R) > 1) then - error('Input R is not a matrix') -end -if (min(size(R)) == 1) then - R = R(:); -end -[m,n] = size(R); -// Compute reflection coefficients for each column of the input matrix -for j = 1:n - X = R(:,j).'; - // Schur's iterative algorithm on a row vector of autocorrelation values - U = [0 X(2:m); X(1:m)]; - - for i = 2:m, - U(2,:) = [0 U(2,1:m-1)]; - k(i-1,j) = -U(1,i)/U(2,i); - U = [1 k(i-1,j); conj(k(i-1,j)) 1]*U; - end - - e(j,1) = U(2,$); -end -endfunction -function narginchk(l,h,t) - if t<l then - error("Too few input arguments"); - elseif t>l then - error("Too many i/p arguments"); - end |