summaryrefslogtreecommitdiff
path: root/help/en_US/medfilt1.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/medfilt1.xml')
-rw-r--r--help/en_US/medfilt1.xml97
1 files changed, 68 insertions, 29 deletions
diff --git a/help/en_US/medfilt1.xml b/help/en_US/medfilt1.xml
index 2766e88..2760fe9 100644
--- a/help/en_US/medfilt1.xml
+++ b/help/en_US/medfilt1.xml
@@ -18,68 +18,107 @@
<refnamediv>
<refname>medfilt1</refname>
<refpurpose>1D median filtering</refpurpose>
+ <para> </para>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
+ y = medfilt1(x)
+ y = medfilt1(x, n)
+ y = medfilt1(x, n, dim)
+ y = medfitl1(__, nanflag, padding)
</synopsis>
+ <para> </para>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>
y = medfilt1(x)
-Applies a 3rd order 1-dimensional median filter to input x along the
-first non-zero dimension. The function appropriately pads the signal
+ </para>
+<para>Applies a 3rd order 1-dimensional median filter to input x along the
+first non-zero dimension.</para>
+ <para>The function appropriately pads the signal
with zeros at the endings. For a segment, a median is calculated as
the middle value (average of two middle values) for odd number
-number (even number) of data points.
-y = medfilt1(x,n)
-Applies a nth order 1-dimensional median filter.
-y = medfilt1(x,n,dim)
-Applies the median filter along the n-th dimension
-y = medfilt1(__, nanflag, padding)
-nanflag specifies how NaN values are treated. padding specifies the
-type of filtering to be performed at the signal edges.
- </para>
- <para>
-</para>
+number (even number) of data points.</para>
+<para> </para>
+<para>y = medfilt1(x,n)</para>
+<para>Applies a nth order 1-dimensional median filter.</para>
+<para> </para>
+<para>y = medfilt1(x,n,dim)</para>
+<para>Applies the median filter along the n-th dimension</para>
+<para> </para>
+<para>y = medfilt1(__, nanflag, padding)</para>
+<para>nanflag specifies how NaN values are treated. padding specifies the
+type of filtering to be performed at the signal edges.</para>
+
+ <para> </para>
</refsection>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>x:</term>
- <listitem><para> int | double</para></listitem></varlistentry>
+ <listitem><para> int | double</para> <para>Input signal.</para></listitem></varlistentry>
<varlistentry><term>n:</term>
- <listitem><para> positive integer scalar</para></listitem></varlistentry>
+ <listitem><para> positive integer, scalar</para><para>
+ Filter order. </para>
+ <para> Defaults to 3.The order of the median filter. Must be less than
+ (length of the signal) where signals are 1D vectors along the
+ dimension of x to be filtered </para></listitem></varlistentry>
<varlistentry><term>dim:</term>
- <listitem><para> positive integer scalar</para></listitem></varlistentry>
+ <listitem><para> positive integer scalar</para><para>
+ Dimension to filter along. </para>
+ <para> Defaults to first non-singleton dimension of x</para></listitem></varlistentry>
<varlistentry><term>nanflag:</term>
- <listitem><para> 'includenan' (default) | 'omitnan'</para></listitem></varlistentry>
- <varlistentry><term>* includenan:</term>
- <listitem><para> Filtering such that the median of any segment</para></listitem></varlistentry>
- <varlistentry><term>* omitnan:</term>
- <listitem><para> Filtering with NaNs omitted in each segment. If a segment</para></listitem></varlistentry>
+ <listitem><para> 'includenan' (default) | 'omitnan'</para> <para>
+ NaN condition.</para>
+ <para> * includenan: Filtering such that the median of any segment containing a NaN is also a NaN. </para>
+ <para>* omitnan: Filtering with NaNs omitted in each segment. If a segment contains all NaNs, the result is NaN</para>
+</listitem></varlistentry>
+
<varlistentry><term>y:</term>
- <listitem><para> int | double</para></listitem></varlistentry>
+ <listitem><para> int | double</para><para>
+ The filtered signal.</para>
+ <para>y has the same size as x</para></listitem></varlistentry>
</variablelist>
+ <para> </para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-1) Noise supression using median filtering
-fs = 1e3;
-t = 1:1/fs:1;
-s = sin(2*%pi*2*t)+ cos(2*%pi*5*t);
-// Adding noise
-x = s + 0.1*randn(size(s));
-y = medfilt1(x);
+//Generate a sinusoidal signal sampled for 1 second at 100 Hz. Add a higher-frequency sinusoid to simulate noise.
+fs = 100;
+t = 0:1/fs:1;
+x = sin(2*%pi*t*3)+0.25*sin(2*%pi*t*40);
+//Use a 10th-order median filter to smooth the signal. Plot the result.
+y = medfilt1(x,10);
+plot(t,x,t,y)
+legend('Original','Filtered');
+y = round(y*10000)/10000;
+y = y'
]]></programlisting>
+
+<scilab:image>
+//Generate a sinusoidal signal sampled for 1 second at 100 Hz. Add a higher-frequency sinusoid to simulate noise.
+fs = 100;
+t = 0:1/fs:1;
+x = sin(2*%pi*t*3)+0.25*sin(2*%pi*t*40);
+
+//Use a 10th-order median filter to smooth the signal. Plot the result.
+y = medfilt1(x,10);
+plot(t,x,t,y)
+legend('Original','Filtered');
+y = round(y*10000)/10000;
+y = y'
+</scilab:image>
+
+
</refsection>
<refsection>