diff options
131 files changed, 4784 insertions, 475 deletions
@@ -1,2 +1,13 @@ # FOSSEE-Signal-Processing-Toolbox -Scilab toolbox for signal processing and digital signal processing +Scilab toolbox for signal processing and digital signal processing. + +## Dependencies +Scilab-octave interface : http://scilab.in/scilab_toolbox/download_codes/FOSSEE_Scilab_Octave_Interface_Toolbox.tar.gz + +## How to use +1. Download and extract the dependancy listed above and put it in a location of your choice. +2. Clone this repo as it is and put it in the same folder as the dependancy folder. +3. Go to scilab-octave interface folder, execute the loader.sce using `exec loader.sce`. +4. Go to the signal processing folder, execute the builder.sce using `exec builder.sce`. +5. Execute loader.sce using `exec loader.sce` and start using the functions in the toolbox. +6. Steps 3,4,5 should be repeated everytime you restart the scilab to load everything again. diff --git a/fht.sci b/fht.sci deleted file mode 100644 index c6fd1bd..0000000 --- a/fht.sci +++ /dev/null @@ -1,16 +0,0 @@ -function y=fht(d,n,dim) -funcprot(0); -rhs=argn(2); -if(rhs<1 | rhs>3) - error("Wrong number of input arguments.") -end -select(rhs) -case 1 then - y=callOctave("fht",d) -case 2 then - y=callOctave("fht",d,n) -case 3 then - y=callOctave("fht",d,n,dim) -end - -endfunction diff --git a/help/en_US/ar_psd.xml b/help/en_US/ar_psd.xml new file mode 100644 index 0000000..103f0d2 --- /dev/null +++ b/help/en_US/ar_psd.xml @@ -0,0 +1,73 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from ar_psd.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="ar_psd" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>ar_psd</refname> + <refpurpose>Calculate the power spectrum of the autoregressive model</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [PSD,F_OUT]=ar_psd (A, V) + [PSD,F_OUT]=ar_psd (A, V, FREQ) + [PSD,F_OUT]=ar_psd (A, V, FREQ, FS) + [PSD,F_OUT]=ar_psd (..., RANGE) + [PSD,F_OUT]=ar_psd (..., METHOD) + [PSD,F_OUT]=ar_psd (..., PLOTTYPE) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>A:</term> + <listitem><para>List of M=(order+1) autoregressive model coefficients. The first element of "ar_coeffs" is the zero-lag coefficient, which always has a value of 1.</para></listitem></varlistentry> + <varlistentry><term>V:</term> + <listitem><para>Square of the moving-average coefficient of the AR model.</para></listitem></varlistentry> + <varlistentry><term>FREQ:</term> + <listitem><para>Frequencies at which power spectral density is calculated, or a scalar indicating the number of uniformly distributed frequency values at which spectral density is calculated. (default = 256)</para></listitem></varlistentry> + <varlistentry><term>FS:</term> + <listitem><para>Sampling frequency (Hertz) (default=1)</para></listitem></varlistentry> + <varlistentry><term>Range:</term> + <listitem><para> 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum.'whole', 'twosided' : frequency range of the spectrum is-sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'.</para></listitem></varlistentry> + <varlistentry><term>Method:</term> + <listitem><para>'fft': use FFT to calculate power spectrum. 'poly': calculate power spectrum as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2.</para></listitem></varlistentry> + <varlistentry><term>Plot type:</term> + <listitem><para>'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value.</para></listitem></varlistentry> + <varlistentry><term>PSD:</term> + <listitem><para> estimate of power-spectral density</para></listitem></varlistentry> + <varlistentry><term>F_OUT:</term> + <listitem><para> frequency values</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +If the FREQ argument is a vector (of frequencies) the spectrum is calculated using the polynomial method and the METHOD argument is ignored. For scalar FREQ, an integer power of 2, or METHOD = "FFT", causes the spectrum to be calculated by FFT. Otherwise, the spectrum is calculated as a polynomial. It may be computationally more efficient to use the FFT method if length of the model is not much smaller than the number of frequency values. The spectrum is scaled so that spectral energy (area under spectrum) is the same as the time-domain energy (mean square of the signal). +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[a,b]= ar_psd([1,2,3],2) + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/arch_fit.xml b/help/en_US/arch_fit.xml new file mode 100644 index 0000000..b984137 --- /dev/null +++ b/help/en_US/arch_fit.xml @@ -0,0 +1,62 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from arch_fit.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="arch_fit" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>arch_fit</refname> + <refpurpose>This functions fits an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [A, B] = arch_fit (Y, X, P, ITER, GAMMA, A0, B0) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper. + </para> + <para> +The model is + </para> + <para> +y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t), +h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2 + </para> + <para> +in which e(t) is N(0, h(t)), given a time-series vector Y up to time t-1 and a matrix of (ordinary) regressors X up to t. The order of the regression of the residual variance is specified by P. + </para> + <para> +If invoked as 'arch_fit (Y, K, P)' with a positive integer K, fit an ARCH(K, P) process, i.e., do the above with the t-th row of X given by + </para> + <para> +[1, y(t-1), ..., y(t-k)] + </para> + <para> +Optionally, one can specify the number of iterations ITER, the updating factor GAMMA, and initial values a0 and b0 for the scoring algorithm. +</para> +</refsection> +</refentry> diff --git a/help/en_US/arch_test.xml b/help/en_US/arch_test.xml new file mode 100644 index 0000000..aa57ff0 --- /dev/null +++ b/help/en_US/arch_test.xml @@ -0,0 +1,73 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from arch_test.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="arch_test" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>arch_test</refname> + <refpurpose>perform a Lagrange Multiplier (LM) test of thenull hypothesis of no conditional heteroscedascity against the alternative of CH(P)</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + arch_test(Y,X,P) + PVAL = arch_test(Y,X,P) + [PVAL, LM]= arch_test(Y,X,P) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>P:</term> + <listitem><para> Degrees of freedom</para></listitem></varlistentry> + <varlistentry><term>PVAL:</term> + <listitem><para>PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +perform a Lagrange Multiplier (LM) test of thenull hypothesis of no conditional heteroscedascity against the alternative of CH(P). + </para> + <para> +I.e., the model is + </para> + <para> +y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t), + </para> + <para> +given Y up to t-1 and X up to t, e(t) is N(0, h(t)) with + </para> + <para> +h(t) = v + a(1) * e(t-1)^2 + ... + a(p) *e(t-p)^2, and the null is a(1) == ... == a(p) == 0. + </para> + <para> +If the second argument is a scalar integer, k,perform the sametest in a linear autoregression model of orderk, i.e., with + </para> + <para> +[1, y(t-1), ..., y(t-K)] as the t-th row of X. + </para> + <para> +Under the null, LM approximatel has a chisquare distribution with P degrees of freedom and PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test. + </para> + <para> +If no output argument is given, the p-value is displayed. +</para> +</refsection> +</refentry> diff --git a/help/en_US/autoreg_matrix.xml b/help/en_US/autoreg_matrix.xml new file mode 100644 index 0000000..61fefef --- /dev/null +++ b/help/en_US/autoreg_matrix.xml @@ -0,0 +1,64 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from autoreg_matrix.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="autoreg_matrix" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>autoreg_matrix</refname> + <refpurpose>Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + autoreg_matrix(Y, K) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>Y:</term> + <listitem><para> Vector</para></listitem></varlistentry> + <varlistentry><term>K:</term> + <listitem><para> Scalar or Vector</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns. + </para> + <para> +In other words, for T > K, '[1, Y(T-1), ..., Y(T-K)]' is the t-th row of the result. + </para> + <para> +The resulting matrix may be used as a regressor matrix in autoregressions. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +autoreg_matrix([1,2,3],2) +ans = +1. 0. 0. +1. 1. 0. +1. 2. 1. + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/bilinear.xml b/help/en_US/bilinear.xml new file mode 100644 index 0000000..0361759 --- /dev/null +++ b/help/en_US/bilinear.xml @@ -0,0 +1,52 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from bilinear.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="bilinear" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>bilinear</refname> + <refpurpose>Transform a s-plane filter specification into a z-plane specification</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [ZB, ZA] = bilinear (SB, SA, T) + [ZB, ZA] = bilinear (SZ, SP, SG, T) + [ZZ, ZP, ZG] = bilinear (...) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Description</title> + <para> +Transform a s-plane filter specification into a z-plane specification. Filters can be specified in either zero-pole-gain or transfer function form. The input form does not have to match the output form. 1/T is the sampling frequency represented in the z plane. + </para> + <para> +Note: this differs from the bilinear function in the signal processing toolbox, which uses 1/T rather than T. + </para> + <para> +Theory: Given a piecewise flat filter design, you can transform it from the s-plane to the z-plane while maintaining the band edges by means of the bilinear transform. This maps the left hand side of the s-plane into the interior of the unit circle. The mapping is highly non-linear, so you must design your filter with band edges in the s-plane positioned at 2/T tan(w*T/2) so that they will be positioned at w after the bilinear transform is complete. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[ZB,ZA]=bilinear([1],[2,3],3) + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/cceps.xml b/help/en_US/cceps.xml index 8f270f6..f6610c9 100644 --- a/help/en_US/cceps.xml +++ b/help/en_US/cceps.xml @@ -17,7 +17,43 @@ <refnamediv> <refname>cceps</refname> - <refpurpose></refpurpose> + <refpurpose>Return the complex cepstrum of the vector x</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + cceps (x) + cceps(x, correct) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> vector.</para></listitem></varlistentry> + <varlistentry><term>correct:</term> + <listitem><para> if 1, a correction method is applied.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function return the complex cepstrum of the vector x. If the optional argument correct has the value 1, a correction method is applied. The default is not to do this. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +cceps([1,2,3],1) +ans = +1.92565 +0.96346 +-1.09735 + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/cohere.xml b/help/en_US/cohere.xml new file mode 100644 index 0000000..677e7a9 --- /dev/null +++ b/help/en_US/cohere.xml @@ -0,0 +1,64 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from cohere.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="cohere" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>cohere</refname> + <refpurpose>Estimate (mean square) coherence of signals "x" and "y"</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [Pxx,freqs] = cohere(x,y,Nfft,Fs,win,overlap,ran,plot_type,detrends) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> [non-empty vector] system-input time-series data</para></listitem></varlistentry> + <varlistentry><term>y:</term> + <listitem><para> [non-empty vector] system-output time-series data</para></listitem></varlistentry> + <varlistentry><term>win:</term> + <listitem><para>[real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument.</para></listitem></varlistentry> + <varlistentry><term>overlap:</term> + <listitem><para>[real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 .</para></listitem></varlistentry> + <varlistentry><term>Nfft:</term> + <listitem><para>[integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently.</para></listitem></varlistentry> + <varlistentry><term>Fs:</term> + <listitem><para>[real scalar] sampling frequency (Hertz); default=1.0</para></listitem></varlistentry> + <varlistentry><term>range:</term> + <listitem><para>'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. 'whole', 'twosided' : frequency range of the spectrum is-Fs/2 to Fs/2, with negative frequenciesstored in "wrap around" order after the positivefrequencies; e.g. frequencies for a 10-point 'twosided'spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'.</para></listitem></varlistentry> + <varlistentry><term>plot_type:</term> + <listitem><para> 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db': specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value.</para></listitem></varlistentry> + <varlistentry><term>detrends:</term> + <listitem><para>'no-strip', 'none' -- do NOT remove mean value from the data'short', 'mean' -- remove the mean value of each segment from each segment of the data. 'linear',-- remove linear trend from each segment of the data.'long-mean'-- remove the mean value from the data before splitting it into segments. This is the default.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Estimate (mean square) coherence of signals "x" and "y". + </para> + <para> +Use the Welch (1967) periodogram/FFT method. +</para> +</refsection> +</refentry> diff --git a/help/en_US/cpsd.xml b/help/en_US/cpsd.xml new file mode 100644 index 0000000..c0adc0c --- /dev/null +++ b/help/en_US/cpsd.xml @@ -0,0 +1,67 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from cpsd.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="cpsd" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>cpsd</refname> + <refpurpose>This function estimates cross power spectrum of data x and y by the Welch (1967) periodogram/FFT method.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [PXX, FREQ] = cpsd(X, Y) + [...] = cpsd(X, Y, WINDOW) + [...] = cpsd(X, Y, WINDOW, OVERLAP) + [...] = cpsd(X, Y, WINDOW, OVERLAP, NFFT) + [...] = cpsd(X, Y, WINDOW, OVERLAP, NFFT, FS) + [...] = cpsd(X, Y, WINDOW, OVERLAP, NFFT, FS, RANGE) + cpsd(...) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X, Y:</term> + <listitem><para> Matrix or integer</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Estimate cross power spectrum of data X and Y by the Welch (1967) periodogram/FFT method. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[a, b] = cpsd([1,2,3],[4,5,6]) +ans = +b = +0. +0.25 +0.5 +a = +2.7804939 +4.4785583 + 1.0743784i +0.7729851 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/czt.xml b/help/en_US/czt.xml index b5f70c6..1296d19 100644 --- a/help/en_US/czt.xml +++ b/help/en_US/czt.xml @@ -17,7 +17,49 @@ <refnamediv> <refname>czt</refname> - <refpurpose></refpurpose> + <refpurpose>Chirp Z Transform</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + czt (x) + czt (x, m) + czt (x, m, w) + czt (x, m, w, a) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> Input scalar or vector</para></listitem></varlistentry> + <varlistentry><term>m:</term> + <listitem><para> Total Number of steps</para></listitem></varlistentry> + <varlistentry><term>w:</term> + <listitem><para> ratio between points in each step</para></listitem></varlistentry> + <varlistentry><term>a:</term> + <listitem><para> point in the complex plane</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Chirp z-transform. Compute the frequency response starting at a and stepping by w for m steps. a is a point in the complex plane, and w is the ratio between points in each step (i.e., radius increases exponentially, and angle increases linearly). +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +m = 32; ## number of points desired +w = exp(-j*2*pi*(f2-f1)/((m-1)*Fs)); ## freq. step of f2-f1/m +a = exp(j*2*pi*f1/Fs); ## starting at frequency f1 +y = czt(x, m, w, a); + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/detrend1.xml b/help/en_US/detrend1.xml new file mode 100644 index 0000000..783d922 --- /dev/null +++ b/help/en_US/detrend1.xml @@ -0,0 +1,51 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from detrend1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="detrend1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>detrend1</refname> + <refpurpose>This function removes the best fit of a polynomial of order P from the data X</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + detrend1(X,P) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Input vecor or matrix.</para></listitem></varlistentry> + <varlistentry><term>P:</term> + <listitem><para> The order of polnomial</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +If X is a vector, 'detrend1(X, P)' removes the best fit of apolynomial of order P from the data X.If X is a matrix, 'detrend1(X, P)' does the same for each column in X. + </para> + <para> +The second argument P is optional. If it is not specified, a value of 1 is assumed. This corresponds to removing a linear trend. +The order of the polynomial can also be given as a string, in which case P must be either "constant" (corresponds to 'P=0') or "linear"(corresponds to 'P=1') +</para> +</refsection> +</refentry> diff --git a/help/en_US/diffpara.xml b/help/en_US/diffpara.xml new file mode 100644 index 0000000..be0f99c --- /dev/null +++ b/help/en_US/diffpara.xml @@ -0,0 +1,60 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from diffpara.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="diffpara" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>diffpara</refname> + <refpurpose>Return the estimator D for the differencing parameter of an integrated time series</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [D, DD] = diffpara (X) + [D, DD] = diffpara (X, A) + [D, DD] = diffpara (X, A, B) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Input scalar or vector.</para></listitem></varlistentry> + <varlistentry><term>DD:</term> + <listitem><para>The estimators for all frequencies in the intervals described above.</para></listitem></varlistentry> + <varlistentry><term>D:</term> + <listitem><para>The mean of DD</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return the estimator D for the differencing parameter of an integrated time series. + </para> + <para> +The frequencies from [2*pi*a/t, 2*pi*b/T] are used for the estimation. If B is omitted, the interval [2*pi/T, 2*pi*a/T] is used. If both B and A are omitted then a = 0.5 * sqrt (T) and b = 1.5 * sqrt (T) is used, where T is the sample size. If X is a matrix, the differencing parameter of each column is estimated. + </para> + <para> +The estimators for all frequencies in the intervals described above is returned in DD. + </para> + <para> +The value of D is simply the mean of DD. +</para> +</refsection> +</refentry> diff --git a/help/en_US/dst1.xml b/help/en_US/dst1.xml index e41beb5..62fa699 100644 --- a/help/en_US/dst1.xml +++ b/help/en_US/dst1.xml @@ -17,7 +17,31 @@ <refnamediv> <refname>dst1</refname> - <refpurpose></refpurpose> + <refpurpose>Computes the type I discrete sine transform of x</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + y= dst1(x) + y= dst1(x,n) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> real or complex valued vector</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Computes the type I discrete sine transform of x. If n is given, then x is padded or trimmed to length n before computing the transform. If x is a matrix, compute the transform along the columns of the the matrix. +</para> +</refsection> </refentry> diff --git a/help/en_US/durbinlevinson.xml b/help/en_US/durbinlevinson.xml new file mode 100644 index 0000000..0e6cc6d --- /dev/null +++ b/help/en_US/durbinlevinson.xml @@ -0,0 +1,53 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from durbinlevinson.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="durbinlevinson" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>durbinlevinson</refname> + <refpurpose>Perform one step of the Durbin-Levinson algorithm..</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + durbinlevinson (C); + durbinlevinson (C, OLDPHI); + durbinlevinson (C, OLDPHI, OLDV); + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>C:</term> + <listitem><para> The vector C specifies the autocovariances '[gamma_0, ..., gamma_t]' from lag 0 to T.</para></listitem></varlistentry> + <varlistentry><term>OLDPHI:</term> + <listitem><para> It specifies the coefficients based on C(T-1).</para></listitem></varlistentry> + <varlistentry><term>OLDV:</term> + <listitem><para> It specifies the corresponding error.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Perform one step of the Durbin-Levinson. +If OLDPHI and OLDV are omitted, all steps from 1 to T of the algorithm are performed. +</para> +</refsection> +</refentry> diff --git a/help/en_US/dwt.xml b/help/en_US/dwt.xml new file mode 100644 index 0000000..3b0859f --- /dev/null +++ b/help/en_US/dwt.xml @@ -0,0 +1,68 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from dwt.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="dwt" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>dwt</refname> + <refpurpose>Discrete wavelet transform (1D)</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [U, V] = dwt(X, WNAME) + [U, V] = dwt(X, HP, GP) + [U, V] = dwt(X, HP, GP,...) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>Inputs:</term> + <listitem><para> </para></listitem></varlistentry> + <varlistentry><term>X:</term> + <listitem><para> Signal Vector.</para></listitem></varlistentry> + <varlistentry><term>WNAME:</term> + <listitem><para> Wavelet name.</para></listitem></varlistentry> + <varlistentry><term>HP:</term> + <listitem><para> Coefficients of low-pass decomposition FIR filter.</para></listitem></varlistentry> + <varlistentry><term>GP:</term> + <listitem><para> Coefficients of high-pass decomposition FIR filter.</para></listitem></varlistentry> + <varlistentry><term>Outputs:</term> + <listitem><para> </para></listitem></varlistentry> + <varlistentry><term>U:</term> + <listitem><para> Signal vector of average, approximation.</para></listitem></varlistentry> + <varlistentry><term>V:</term> + <listitem><para> Signal vector of difference, detail.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function calculates the discrete wavelet transform (1D). +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ + + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fft.xml b/help/en_US/fft.xml new file mode 100644 index 0000000..12922ed --- /dev/null +++ b/help/en_US/fft.xml @@ -0,0 +1,74 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fft.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fft" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fft</refname> + <refpurpose>Calculates the discrete Fourier transform of a matrix using Fast Fourier Transform algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + fft (x, n, dim) + fft (x, n) + fft (x) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> input matrix</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> Specifies the number of elements of x to be used</para></listitem></varlistentry> + <varlistentry><term>dim:</term> + <listitem><para> Specifies the dimention of the matrix along which the FFT is performed</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +The FFT is calculated along the first non-singleton dimension of the array. Thus, FFT is computed for each column of x. + </para> + <para> +n is an integer specifying the number of elements of x to use. If n is larger than dimention along. which the FFT is calculated, then x is resized and padded with zeros. +Similarly, if n is smaller, then x is truncated. + </para> + <para> +dim is an integer specifying the dimension of the matrix along which the FFT is performed. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +x = [1 2 3; 4 5 6; 7 8 9] +n = 3 +dim = 2 +fft (x, n, dim) +ans = + +6.0000 + 0.0000i -1.5000 + 0.8660i -1.5000 - 0.8660i +15.0000 + 0.0000i -1.5000 + 0.8660i -1.5000 - 0.8660i +24.0000 + 0.0000i -1.5000 + 0.8660i -1.5000 - 0.8660i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fft2.xml b/help/en_US/fft2.xml new file mode 100644 index 0000000..d35fc4a --- /dev/null +++ b/help/en_US/fft2.xml @@ -0,0 +1,68 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fft2.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fft2" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fft2</refname> + <refpurpose>Calculates the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + fft2 (A, m, n) + fft2 (A) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>A:</term> + <listitem><para> input matrix</para></listitem></varlistentry> + <varlistentry><term>m:</term> + <listitem><para> number of rows of A to be used</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> number of columns of A to be used</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +It performs two-dimentional FFT on the matrix A. m and n may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros. +If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +x = [1 2 3; 4 5 6; 7 8 9] +m = 4 +n = 4 +fft2 (A, m, n) +ans = + +45 + 0i -6 - 15i 15 + 0i -6 + 15i +-18 - 15i -5 + 8i -6 - 5i 5 - 4i +15 + 0i -2 - 5i 5 + 0i -2 + 5i +-18 + 15i 5 + 4i -6 + 5i -5 - 8i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fftconv.xml b/help/en_US/fftconv.xml new file mode 100644 index 0000000..8748aec --- /dev/null +++ b/help/en_US/fftconv.xml @@ -0,0 +1,55 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fftconv.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fftconv" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fftconv</refname> + <refpurpose>Convolve two vectors using the FFT for computation.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = fftconv(X, Y) + Y = fftconv(X, Y, N) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X, Y:</term> + <listitem><para> Vectors</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Convolve two vectors using the FFT for computation. 'c' = fftconv (X, Y)' returns a vector of length equal to 'length(X) + length (Y) - 1'. If X and Y are the coefficient vectors of two polynomials, the returned value is the coefficient vector of the product polynomial. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +fftconv([1,2,3], [3,4,5]) +ans = +3. 10. 22. 22. 15. + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fftn.xml b/help/en_US/fftn.xml new file mode 100644 index 0000000..26c56c8 --- /dev/null +++ b/help/en_US/fftn.xml @@ -0,0 +1,55 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fftn.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fftn" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fftn</refname> + <refpurpose>This function computes the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = fftn(A) + Y = fftn(A, size) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>A:</term> + <listitem><para> Matrix</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function computes the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm. The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the FFT. Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +fftn([2,3,4]) +ans = +9. - 1.5 + 0.8660254i - 1.5 - 0.8660254i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fftshift1.xml b/help/en_US/fftshift1.xml new file mode 100644 index 0000000..abf1de1 --- /dev/null +++ b/help/en_US/fftshift1.xml @@ -0,0 +1,64 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fftshift1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fftshift1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fftshift1</refname> + <refpurpose>Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + fftshift1 (X) + fftshift1 (X, DIM) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para>It is a vector of N elements corresponding to time samples</para></listitem></varlistentry> + <varlistentry><term>DIM:</term> + <listitem><para> The optional DIM argument can be used to limit the dimension along which the permutation occurs</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix. + </para> + <para> +If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift1 (fft1 (X))' corresponds to frequencies + </para> + <para> +f = [ -(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df ] + </para> + <para> +where df = 1 / dt. + </para> + <para> +If X is a matrix, the same holds for rows and columns. If X is an array, then the same holds along each dimension. + </para> + <para> +The optional DIM argument can be used to limit the dimension along +</para> +</refsection> +</refentry> diff --git a/help/en_US/fht.xml b/help/en_US/fht.xml index 06311a3..69dada7 100644 --- a/help/en_US/fht.xml +++ b/help/en_US/fht.xml @@ -17,7 +17,39 @@ <refnamediv> <refname>fht</refname> - <refpurpose>funcprot(0);</refpurpose> + <refpurpose>The Function calculates the Fast Hartley Transform of real input.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + M = fht (D) + M = fht (D, N) + M = fht (D, N, DIM) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function calculates the Fast Hartley transform of real input D. If D is a matrix, the Hartley transform is calculated along the columns by default. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +fht(1:4) +ans = +10 -4 -2 0 +This function is being called from Octave. + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/filter1.xml b/help/en_US/filter1.xml new file mode 100644 index 0000000..816c4e4 --- /dev/null +++ b/help/en_US/filter1.xml @@ -0,0 +1,88 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from filter1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="filter1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>filter1</refname> + <refpurpose>Apply a 1-D digital filter to the data X.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = filter1(B, A, X) + [Y, SF] = filter1(B, A, X, SI) + [Y, SF] = filter1(B, A, X, [], DIM) + [Y, SF] = filter1(B, A, X, SI, DIM) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>B:</term> + <listitem><para> Matrix or Integer</para></listitem></varlistentry> + <varlistentry><term>A:</term> + <listitem><para> Matrix or Integer</para></listitem></varlistentry> + <varlistentry><term>X:</term> + <listitem><para> Matrix or Integer</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +'filter' returns the solution to the following linear, time-invariant difference equation: + </para> + <para> +N M + </para> + <para> +SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x) + </para> + <para> +k=0 k=0 + </para> + <para> +where N=length(a)-1 and M=length(b)-1. The result is calculated over the first non-singleton dimension of X or over DIM if supplied. + </para> + <para> +An equivalent form of the equation is: + </para> + <para> +N M + </para> + <para> +y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x) + </para> + <para> +k=1 k=0 + </para> + <para> +where c = a/a(1) and d = b/a(1). +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +filter([1,2,3], [3,4,5], [5,6,7]) +ans = +1.6666667 3.1111111 4.4074074 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/filter2.xml b/help/en_US/filter2.xml new file mode 100644 index 0000000..9c54920 --- /dev/null +++ b/help/en_US/filter2.xml @@ -0,0 +1,63 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from filter2.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="filter2" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>filter2</refname> + <refpurpose>Apply the 2-D FIR filter B to X.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = filter2(B, X) + Y = filter2(B, X, SHAPE) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>B, X:</term> + <listitem><para> Matrix</para></listitem></varlistentry> + <varlistentry><term>SHAPE:</term> + <listitem><para> </para></listitem></varlistentry> + <varlistentry><term>'full':</term> + <listitem><para> pad X with zeros on all sides before filtering.</para></listitem></varlistentry> + <varlistentry><term>'same':</term> + <listitem><para> unpadded X (default)</para></listitem></varlistentry> + <varlistentry><term>'valid':</term> + <listitem><para> trim X after filtering so edge effects are no included.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function applies the 2-D FIR filter B to X. If the argument SHAPE is specified, return an array of the desired shape. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +filter2([1,3], [4,5]) +ans = +19. 5. + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/findpeaks.xml b/help/en_US/findpeaks.xml new file mode 100644 index 0000000..51db28a --- /dev/null +++ b/help/en_US/findpeaks.xml @@ -0,0 +1,80 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from findpeaks.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="findpeaks" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>findpeaks</refname> + <refpurpose>This function find peaks on DATA.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [PKS, LOC, EXTRA] = findpeaks(DATA) + [PKS, LOC, EXTRA] = findpeaks(..., PROPERTY, VALUE) + [PKS, LOC, EXTRA] = findpeaks(..., "DoubleSided") + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Description</title> + <para> +Peaks of a positive array of data are defined as local maxima. For double-sided data, they are maxima of the positive part and minima of the negative part. DATA is expected to be a single column vector. + </para> + <para> +The function returns the value of DATA at the peaks in PKS. The index indicating their position is returned in LOC. + </para> + <para> +The third output argument is a structure with additional information: + </para> + <para> +"parabol": +A structure containing the parabola fitted to each returned peak. The structure has two fields, "x" and "pp". The field "pp" contains the coefficients of the 2nd degree polynomial and "x" the extrema of the intercal here it was fitted. + </para> + <para> +"height": +The estimated height of the returned peaks (in units of DATA). + </para> + <para> +"baseline": +The height at which the roots of the returned peaks were calculated (in units of DATA). + </para> + <para> +"roots": +The abscissa values (in index units) at which the parabola fitted to each of the returned peaks crosses the "baseline" value. The width of the peak is calculated by 'diff(roots)'. + </para> + <para> +This function accepts property-value pair given in the list below: + </para> + <para> +"MinPeakHeight": +Minimum peak height (positive scalar). Only peaks that exceed this value will be returned. For data taking positive and negative values use the option "DoubleSided". Default value '2*std (abs (detrend (data,0)))'. + </para> + <para> +"MinPeakDistance": +Minimum separation between (positive integer). Peaks separated by less than this distance are considered a single peak. This distance is also used to fit a second order polynomial to the peaks to estimate their width, therefore it acts as a smoothing parameter. Default value 4. + </para> + <para> +"MinPeakWidth": +Minimum width of peaks (positive integer). The width of the peaks is estimated using a parabola fitted to the neighborhood of each peak. The neighborhood size is equal to the value of "MinPeakDistance". The width is evaluated at the half height of the peak with baseline at "MinPeakHeight". Default value 2. + </para> + <para> +"DoubleSided": +Tells the function that data takes positive and negative values. The base-line for the peaks is taken as the mean value of the function. This is equivalent as passing the absolute value of the data after removing the mean. +</para> +</refsection> +</refentry> diff --git a/help/en_US/fir1.xml b/help/en_US/fir1.xml new file mode 100644 index 0000000..c5650ba --- /dev/null +++ b/help/en_US/fir1.xml @@ -0,0 +1,68 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fir1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fir1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fir1</refname> + <refpurpose>Produce an order N FIR filter with the given frequency cutoff, returning the N+1 filter coefficients in B.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + B = fir1(N, W) + B = fir1(N, W, TYPE) + B = fir1(N, W, TYPE, WINDOW) + B = fir1(N, W, TYPE, WINDOW, NOSCALE) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>N:</term> + <listitem><para> Integer</para></listitem></varlistentry> + <varlistentry><term>W:</term> + <listitem><para> Integer or Vector</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Produce an order N FIR filter with the given frequency cutoff W, returning the N+1 filter coefficients in B. If W is a scalar, it specifies the frequency cutoff for a lowpass or highpass filter. If W is a two-element vector, the two values specify the edges of a bandpass or bandstop filter. If W is an N-element vector, each value specifies a band edge of a multiband pass/stop filter. + </para> + <para> +The filter TYPE can be specified with one of the following strings: "low", "high", "stop", "pass", "bandpass", "DC-0", or "DC-1". The default is "low" is W is a scalar, "pass" if W is a pair, or "DC-0" if W is a vector with more than 2 elements. + </para> + <para> +An optional shaping WINDOW can be given as a vector with length N+1. If not specified, a Hamming window of length N+1 is used. + </para> + <para> +With the option "noscale", the filter coefficients are not normalized. The default is to normalize the filter such that the magnitude response of the center of the first passband is 1. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +fir1 (5, 0.4) +ans = +9.2762e-05 9.5482e-02 4.0443e-01 4.0443e-01 9.5482e-02 9.2762e-05 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fir2.xml b/help/en_US/fir2.xml new file mode 100644 index 0000000..932c474 --- /dev/null +++ b/help/en_US/fir2.xml @@ -0,0 +1,71 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fir2.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fir2" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fir2</refname> + <refpurpose>Produce an order N FIR filter with arbitrary frequency response M over frequency bands F, returning the N+1 filter coefficients in B.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + B = fir2(N, F, M) + B = fir2(N, F, M, GRID_N) + B = fir1(N, F, M, GRID_N, RAMP_N) + B = fir1(N, F, M, GRID_N, RAMP_N, WINDOW) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>N:</term> + <listitem><para> Integer</para></listitem></varlistentry> + <varlistentry><term>F, M:</term> + <listitem><para> Vector</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Produce an order N FIR filter with arbitrary frequency response M over frequency bands F, returning the N+1 filter coefficients in B. The vector F specifies the frequency band edges of the filter response and M specifies the magnitude response at each frequency. + </para> + <para> +The vector F must be nondecreasing over the range [0,1], and the first and last elements must be 0 and 1, respectively. A discontinuous jump in the frequency response can be specified by duplicating a band edge in F with different values in M. + </para> + <para> +The resolution over which the frequency response is evaluated can be controlled with the GRID_N argument. The default is 512 or the next larger power of 2 greater than the filter length. + </para> + <para> +The band transition width for discontinuities can be controlled with the RAMP_N argument. The default is GRID_N/25. Larger values will result in wider band transitions but better stopband rejection. + </para> + <para> +An optional shaping WINDOW can be given as a vector with length N+1. If not specified, a Hamming window of length N+1 is used. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +fir2 (10, [0, 0.5, 1], [1, 2, 3]) +ans = +-0.00130 0.00000 -0.01792 0.00000 -0.36968 2.00000 -0.36968 0.00000 -0.01792 0.00000 -0.00130 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fractdiff.xml b/help/en_US/fractdiff.xml new file mode 100644 index 0000000..c26508f --- /dev/null +++ b/help/en_US/fractdiff.xml @@ -0,0 +1,38 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fractdiff.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fractdiff" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fractdiff</refname> + <refpurpose>Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + fractdiff (X, D) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1. +</para> +</refsection> +</refentry> diff --git a/help/en_US/freqz.xml b/help/en_US/freqz.xml new file mode 100644 index 0000000..8a29be7 --- /dev/null +++ b/help/en_US/freqz.xml @@ -0,0 +1,93 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from freqz.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="freqz" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>freqz</refname> + <refpurpose>This function returns the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [H, W] = freqz(B, A, N, "whole") + [H, W] = freqz(B) + [H, W] = freqz(B, A) + [H, W] = freqz(B, A, N) + H = freqz(B, A, W) + [H, W] = freqz(..., FS) + freqz(...) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>B, A, N:</term> + <listitem><para> Integer or Vector</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively. + </para> + <para> +The response is evaluated at N angular frequencies between 0 and 2*pi. + </para> + <para> +The output value W is a vector of the frequencies. + </para> + <para> +If A is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR filter). + </para> + <para> +If N is omitted, a value of 512 is assumed. For fastest computation, N should factor into a small number of small primes. + </para> + <para> +If the fourth argument, "whole", is omitted the response is evaluated at frequencies between 0 and pi. + </para> + <para> +'freqz (B, A, W)' + </para> + <para> +Evaluate the response at the specific frequencies in the vector W. The values for W are measured in radians. + </para> + <para> +'[...] = freqz (..., FS)' + </para> + <para> +Return frequencies in Hz instead of radians assuming a sampling rate FS. If you are evaluating the response at specific frequencies W, those frequencies should be requested in Hz rather than radians. + </para> + <para> +'freqz (...)' + </para> + <para> +Plot the magnitude and phase response of H rather than returning them. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +H = freqz([1,2,3], [4,3], [1,2,5]) +ans = +0.4164716 - 0.5976772i - 0.4107690 - 0.2430335i 0.1761948 + 0.6273032i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fwht.xml b/help/en_US/fwht.xml index 7b62250..4140453 100644 --- a/help/en_US/fwht.xml +++ b/help/en_US/fwht.xml @@ -17,7 +17,53 @@ <refnamediv> <refname>fwht</refname> - <refpurpose></refpurpose> + <refpurpose>Compute the Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + fwht (x) + fwht (x, n) + fwht (x, n, order) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> real or complex valued scalar or vector</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> x is truncated or extended to have length n</para></listitem></varlistentry> + <varlistentry><term>order:</term> + <listitem><para> Specification of order in which coefficients should be arranged</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Compute the Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm. If the input is a matrix, the FWHT is calculated along the columns of x. + </para> + <para> +The number of elements of x must be a power of 2; if not, the input will be extended and filled with zeros. If a second argument is given, the input is truncated or extended to have length n. + </para> + <para> +The third argument specifies the order in which the returned Walsh-Hadamard transform coefficients should be arranged. The order may be any of the following strings: + </para> + <para> +"sequency" +The coefficients are returned in sequency order. This is the default if order is not given. + </para> + <para> +"hadamard" +The coefficients are returned in Hadamard order. + </para> + <para> +"dyadic" +The coefficients are returned in Gray code order. +</para> +</refsection> </refentry> diff --git a/help/en_US/hamming.xml b/help/en_US/hamming.xml new file mode 100644 index 0000000..9a072e8 --- /dev/null +++ b/help/en_US/hamming.xml @@ -0,0 +1,48 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from hamming.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="hamming" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>hamming</refname> + <refpurpose>Return the filter coefficients of a Hamming window of length M</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + hamming (M) + hamming (M, "periodic") + hamming (M, "symmetric") + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>M:</term> + <listitem><para> real scalar, which will be the length of hamming window</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return the filter coefficients of a Hamming window of length M. +If the optional argument "periodic" is given, the periodic form of the window is returned. This is equivalent to the window of length M+1 with the last coefficient removed. The optional argument "symmetric" is equivalent to not specifying a second argument. +</para> +</refsection> +</refentry> diff --git a/help/en_US/hanning.xml b/help/en_US/hanning.xml new file mode 100644 index 0000000..5350656 --- /dev/null +++ b/help/en_US/hanning.xml @@ -0,0 +1,48 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from hanning.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="hanning" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>hanning</refname> + <refpurpose>Return the filter coefficients of a Hanning window of length M</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + hanning (M) + hanning (M, "periodic") + hanning (M, "symmetric") + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>M:</term> + <listitem><para> real scalar, which will be the length of hanning window</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return the filter coefficients of a Hanning window of length M. +If the optional argument "periodic" is given, the periodic form of the window is returned. This is equivalent to the window of length M+1 with the last coefficient removed. The optional argument "symmetric" is equivalent to not specifying a second argument. +</para> +</refsection> +</refentry> diff --git a/help/en_US/hilbert1.xml b/help/en_US/hilbert1.xml index 5bfa3d2..765d670 100644 --- a/help/en_US/hilbert1.xml +++ b/help/en_US/hilbert1.xml @@ -17,7 +17,54 @@ <refnamediv> <refname>hilbert1</refname> - <refpurpose></refpurpose> + <refpurpose>Analytic extension of real valued signal.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + h= hilbert1(f) + h= hilbert1(f,N) + h= hilbert1(f,N,dim) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>f:</term> + <listitem><para> real or complex valued scalar or vector</para></listitem></varlistentry> + <varlistentry><term>N:</term> + <listitem><para> The result will have length N</para></listitem></varlistentry> + <varlistentry><term>dim :</term> + <listitem><para> It analyses the input in this dimension</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +h = hilbert1 (f) computes the extension of the real valued signal f to an analytic signal. If f is a matrix, the transformation is applied to each column. For N-D arrays, the transformation is applied to the first non-singleton dimension. + </para> + <para> +real (h) contains the original signal f. imag (h) contains the Hilbert transform of f. + </para> + <para> +hilbert1 (f, N) does the same using a length N Hilbert transform. The result will also have length N. + </para> + <para> +hilbert1 (f, [], dim) or hilbert1 (f, N, dim) does the same along dimension dim. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +## notice that the imaginary signal is phase-shifted 90 degrees +t=linspace(0,10,256); +z = hilbert1(sin(2*pi*0.5*t)); +grid on; plot(t,real(z),';real;',t,imag(z),';imag;'); + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/hurst.xml b/help/en_US/hurst.xml index 85f3cc9..c6c5f3e 100644 --- a/help/en_US/hurst.xml +++ b/help/en_US/hurst.xml @@ -17,7 +17,31 @@ <refnamediv> <refname>hurst</refname> - <refpurpose></refpurpose> + <refpurpose>Estimate the Hurst parameter of sample X via the rescaled r statistic.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + hurst(X) + variable=hurst(X) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> X is a matrix, the parameter of sample X via the rescaled r statistic</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +This function estimates the Hurst parameter of sample X via the rescaled rstatistic. +</para> +</refsection> </refentry> diff --git a/help/en_US/idct1.xml b/help/en_US/idct1.xml index c43eb1c..7715570 100644 --- a/help/en_US/idct1.xml +++ b/help/en_US/idct1.xml @@ -17,7 +17,41 @@ <refnamediv> <refname>idct1</refname> - <refpurpose>funcprot(0);</refpurpose> + <refpurpose>Compute the inverse discrete cosine transform of input.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = idct1(X) + Y = idct1(X, N) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Matrix or integer</para></listitem></varlistentry> + <varlistentry><term>N:</term> + <listitem><para> If N is given, then X is padded or trimmed to length N before computing the transform.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function computes the inverse discrete cosine transform of input X. If N is given, then X is padded or trimmed to length N before computing the transform. If X is a matrix, compute the transform along the columns of the the matrix. The transform is faster if X is real-valued and even length. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +idct1([1,3,6]) +ans = +5.1481604 - 4.3216292 0.9055197 + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/idct2.xml b/help/en_US/idct2.xml index 0e7fcdc..ae4d2e8 100644 --- a/help/en_US/idct2.xml +++ b/help/en_US/idct2.xml @@ -17,7 +17,42 @@ <refnamediv> <refname>idct2</refname> - <refpurpose>funcprot(0);</refpurpose> + <refpurpose>This function computes the inverse 2-D discrete cosine transform of input matrix.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = idct2(X) + Y = idct2(X, M, N) + Y = idct2(X, [M, N]) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Matrix or integer</para></listitem></varlistentry> + <varlistentry><term>M, N:</term> + <listitem><para> If specified Matrix X is padded with M rows and N columns.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function computes the inverse 2-D discrete cosine transform of matrix X. If M and N are specified, the input is either padded or truncated to have M rows and N columns. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +idct2(3, 4, 6) +ans = +2.811261 0.612372 -0.525856 0.250601 0.612372 -0.086516 + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/idst1.xml b/help/en_US/idst1.xml index 74a9f0e..200ec53 100644 --- a/help/en_US/idst1.xml +++ b/help/en_US/idst1.xml @@ -17,7 +17,41 @@ <refnamediv> <refname>idst1</refname> - <refpurpose>funcprot(0);</refpurpose> + <refpurpose>This function computes the inverse type I discrete sine transform.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = idst(X) + Y = idst(X, N) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Matrix or integer</para></listitem></varlistentry> + <varlistentry><term>N:</term> + <listitem><para> If N is given, then X is padded or trimmed to length N before computing the transform.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function computes the inverse type I discrete sine transform of Y. If N is given, then Y is padded or trimmed to length N before computing the transform. If Y is a matrix, compute the transform along the columns of the the matrix. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +idst([1,3,6]) +ans = +3.97487 -2.50000 0.97487 + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/ifft.xml b/help/en_US/ifft.xml new file mode 100644 index 0000000..5e09726 --- /dev/null +++ b/help/en_US/ifft.xml @@ -0,0 +1,81 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from ifft.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="ifft" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>ifft</refname> + <refpurpose>Calculates the inverse discrete Fourier transform of a matrix using Fast Fourier Transform algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + ifft (x, n, dim) + ifft (x, n) + ifft (x) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> input matrix</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> Specifies the number of elements of x to be used</para></listitem></varlistentry> + <varlistentry><term>dim:</term> + <listitem><para> Specifies the dimention of the matrix along which the inverse FFT is performed</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +</para> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +The inverse FFT is calculated along the first non-singleton dimension of the array. Thus, inverse FFT is computed for each column of x. + </para> + <para> +n is an integer specifying the number of elements of x to use. If n is larger than dimention along. which the inverse FFT is calculated, then x is resized and padded with zeros. +Similarly, if n is smaller, then x is truncated. + </para> + <para> +dim is an integer specifying the dimension of the matrix along which the inverse FFT is performed. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +x = [1 2 3; 4 5 6; 7 8 9] +n = 3 +dim = 2 +ifft (x, n, dim) +ans = + +2.00000 + 0.00000i -0.50000 - 0.28868i -0.50000 + 0.28868i +5.00000 + 0.00000i -0.50000 - 0.28868i -0.50000 + 0.28868i +8.00000 + 0.00000i -0.50000 - 0.28868i -0.50000 + 0.28868i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/ifft21.xml b/help/en_US/ifft2.xml index fed0499..02eb5f9 100644 --- a/help/en_US/ifft21.xml +++ b/help/en_US/ifft2.xml @@ -2,11 +2,11 @@ <!-- * - * This help file was generated from ifft21.sci using help_from_sci(). + * This help file was generated from ifft2.sci using help_from_sci(). * --> -<refentry version="5.0-subset Scilab" xml:id="ifft21" xml:lang="en" +<refentry version="5.0-subset Scilab" xml:id="ifft2" xml:lang="en" xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" @@ -16,7 +16,7 @@ xmlns:db="http://docbook.org/ns/docbook"> <refnamediv> - <refname>ifft21</refname> + <refname>ifft2</refname> <refpurpose>Calculates the inverse two-dimensional discrete Fourier transform of A using a Fast Fourier Transform algorithm.</refpurpose> </refnamediv> @@ -56,7 +56,7 @@ If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is trea x = [1 2 3; 4 5 6; 7 8 9] m = 4 n = 4 -ifft21 (A, m, n) +ifft2 (A, m, n) ans = 2.81250 + 0.00000i -0.37500 + 0.93750i 0.93750 + 0.00000i -0.37500 - 0.93750i diff --git a/help/en_US/ifftn.xml b/help/en_US/ifftn.xml new file mode 100644 index 0000000..6b21e57 --- /dev/null +++ b/help/en_US/ifftn.xml @@ -0,0 +1,55 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from ifftn.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="ifftn" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>ifftn</refname> + <refpurpose>Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = ifftn(A) + Y = ifftn(A, size) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>A:</term> + <listitem><para> Matrix</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm. The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the inverse FFT. Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +ifftn([2,3,4]) +ans = +3. - 0.5 - 0.2886751i - 0.5 + 0.2886751i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/ifftshift1.xml b/help/en_US/ifftshift1.xml new file mode 100644 index 0000000..c281669 --- /dev/null +++ b/help/en_US/ifftshift1.xml @@ -0,0 +1,52 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from ifftshift1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="ifftshift1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>ifftshift1</refname> + <refpurpose>Undo the action of the 'fftshift1' function.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + ifftshift1 (X) + ifftshift1 (X, DIM) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para>It is a vector of N elements corresponding to time samples</para></listitem></varlistentry> + <varlistentry><term>DIM:</term> + <listitem><para> The optional DIM argument can be used to limit the dimension along which the permutation occurs</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Undo the action of the 'fftshift1' function. + </para> + <para> +For even length X, 'fftshift1' is its own inverse, but odd lengths differ slightly. +</para> +</refsection> +</refentry> diff --git a/help/en_US/ifht.xml b/help/en_US/ifht.xml index 2d9ead3..e4e692b 100644 --- a/help/en_US/ifht.xml +++ b/help/en_US/ifht.xml @@ -17,7 +17,49 @@ <refnamediv> <refname>ifht</refname> - <refpurpose>funcprot(0);</refpurpose> + <refpurpose>Calculate the inverse Fast Hartley Transform of real input D</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + m= ifht (d) + m= ifht (d,n) + m= ifht (d,n,dim) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>d:</term> + <listitem><para> real or complex valued scalar or vector</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> Similar to the options of FFT function</para></listitem></varlistentry> + <varlistentry><term>dim:</term> + <listitem><para> Similar to the options of FFT function</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Calculate the inverse Fast Hartley Transform of real input d. If d is a matrix, the inverse Hartley transform is calculated along the columns by default. The options n and dim are similar to the options of FFT function. + </para> + <para> +The forward and inverse Hartley transforms are the same (except for a scale factor of 1/N for the inverse hartley transform), but implemented using different functions. + </para> + <para> +The definition of the forward hartley transform for vector d, m[K] = 1/N \sum_{i=0}^{N-1} d[i]*(cos[K*2*pi*i/N] + sin[K*2*pi*i/N]), for 0 <= K < N. m[K] = 1/N \sum_{i=0}^{N-1} d[i]*CAS[K*i], for 0 <= K < N. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +ifht(1 : 4) +ifht(1:4, 2) + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/ifwht.xml b/help/en_US/ifwht.xml index 37903a0..c746dcd 100644 --- a/help/en_US/ifwht.xml +++ b/help/en_US/ifwht.xml @@ -17,7 +17,49 @@ <refnamediv> <refname>ifwht</refname> - <refpurpose></refpurpose> + <refpurpose>Compute the inverse Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + ifwht (x) + ifwht (x, n) + ifwht (x, n, order) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> real or complex valued scalar or vector</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> Input is truncated or extended to have a length of n</para></listitem></varlistentry> + <varlistentry><term>order:</term> + <listitem><para> Specifies the order in which the returned inverse Walsh-Hadamard transform</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Compute the inverse Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm. If the input is a matrix, the inverse FWHT is calculated along the columns of x. +The number of elements of x must be a power of 2; if not, the input will be extended and filled with zeros. If a second argument is given, the input is truncated or extended to have length n. +The third argument specifies the order in which the returned inverse Walsh-Hadamard transform coefficients should be arranged. The order may be any of the following strings: + </para> + <para> +"sequency" +The coefficients are returned in sequency order. This is the default if order is not given. + </para> + <para> +"hadamard" +The coefficients are returned in Hadamard order. + </para> + <para> +"dyadic" +The coefficients are returned in Gray code order. +</para> +</refsection> </refentry> diff --git a/help/en_US/invfreq.xml b/help/en_US/invfreq.xml index 2f10f8e..38f2da3 100644 --- a/help/en_US/invfreq.xml +++ b/help/en_US/invfreq.xml @@ -17,7 +17,53 @@ <refnamediv> <refname>invfreq</refname> - <refpurpose></refpurpose> + <refpurpose>Calculates inverse frequency vectors</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [B,A] = invfreq(H,F,nB,nA) + [B,A] = invfreq(H,F,nB,nA,W) + [B,A] = invfreq(H,F,nB,nA,W,[],[],plane) + [B,A] = invfreq(H,F,nB,nA,W,iter,tol,plane) + + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>H:</term> + <listitem><para> desired complex frequency response,It is assumed that A and B are real polynomials, hence H is one-sided.</para></listitem></varlistentry> + <varlistentry><term>F:</term> + <listitem><para> vector of frequency samples in radians</para></listitem></varlistentry> + <varlistentry><term>nA:</term> + <listitem><para> order of denominator polynomial A</para></listitem></varlistentry> + <varlistentry><term>nB:</term> + <listitem><para> order of numerator polynomial B</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Fit filter B(z)/A(z) or B(s)/A(s) to complex frequency response at frequency points F. A and B are real polynomial coefficients of order nA and nB respectively. Optionally, the fit-errors can be weighted vs frequency according to the weights W. Also, the transform plane can be specified as either 's' for continuous time or 'z' for discrete time. 'z' is chosen by default. Eventually, Steiglitz-McBride iterations will be specified by iter and tol. + </para> + <para> +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[B,A] = butter(12,1/4); +[H,w] = freqz(B,A,128); +[Bh,Ah] = invfreq(H,F,4,4); +Hh = freqz(Bh,Ah); +disp(sprintf('||frequency response error|| = %f',norm(H-Hh))); + + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/master_help.xml b/help/en_US/master_help.xml index 3fff4c5..830e441 100644 --- a/help/en_US/master_help.xml +++ b/help/en_US/master_help.xml @@ -1,95 +1,27 @@ <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE book [ <!--Begin Entities--> -<!ENTITY a81320b4221ec0c937db241f3f09761d9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ac2poly.xml"> -<!ENTITY a96531f053d1d3aca0c8998446e7ba88a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ac2rc.xml"> -<!ENTITY a44e8c63cbbbfce58373a4d528cc59bda SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/arParEst.xml"> -<!ENTITY a44baa1c529b4c2034108849f08147667 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/arburg.xml"> <!ENTITY a80dc2d1be7f85c4fdeda3627eeaeba5b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/arch_rnd.xml"> -<!ENTITY a64ecf6e721160dfb163621e4a3a00d0f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/arcov.xml"> <!ENTITY aa8ae4694cb3e88d729d68b31dffb8be2 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/arma_rnd.xml"> -<!ENTITY aff6d91054f11396fab566c3b7097e225 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/armcov.xml"> -<!ENTITY a8128572f33478b9c8c764de03cf89fc4 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/aryule.xml"> -<!ENTITY a782c9cd4d7dad9d24a672148080e384c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/barthannwin.xml"> -<!ENTITY a0be563c94e1e42b7735567091463661e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/bartlett.xml"> <!ENTITY a8b11798eda410c3ebbbdf55e6d9f64c6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/besselap.xml"> -<!ENTITY a4b0f0cf49b01fcbb7aedef41c40d0e25 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/besself.xml"> -<!ENTITY a8ee66630c6b42252d90d4304e8af282c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/bitrevorder.xml"> -<!ENTITY a1c12c9e7e5cac759289269fdedd8905c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/blackman.xml"> -<!ENTITY a029443469c6628757ecf658204c40f45 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/blackmanharris.xml"> -<!ENTITY a73a177320474a25b6b9c42ed2409895a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/blackmannuttall.xml"> -<!ENTITY a6f9d33b92c0e5f71e2f83bffbea97f58 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/bohmanwin.xml"> -<!ENTITY a62ed1363186685b47656c8a5790efa44 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/boxcar.xml"> -<!ENTITY a9558e8614d7f439a08d4332c74eb1118 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/buffer.xml"> <!ENTITY a3090cfb96d2431a77d3573f5c22eba2c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/buttap.xml"> -<!ENTITY a7c579640b7fb009b1613e4a9e6a3acb6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/butter.xml"> -<!ENTITY aec6a38aa439b8a6c26a7d2ada787095f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/buttord.xml"> <!ENTITY aad06f15b8c56fd06a63ed4c93a7b17de SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cceps.xml"> -<!ENTITY a3c7785a5dca1c2ff0bcb54385411d26c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cconv.xml"> -<!ENTITY aa7ee14bf521256b990217ff8fdfd1c4f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cell2sos.xml"> <!ENTITY aae1630f64e7d6887cfb5f4801b70358c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb.xml"> <!ENTITY aa2b1694a7963cd81b95b1b3d497d01c9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb1ap.xml"> -<!ENTITY adbfd2762e8949c7d9277a546b59fee44 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb1ord.xml"> <!ENTITY af4a3555ae3fc9828d4f5bcfe3c082bae SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb2ap.xml"> -<!ENTITY a92cf35397a3f0f935f69fa0c6b980916 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb2ord.xml"> -<!ENTITY a144520c3e437156f61bc5c85aff56360 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/chebwin.xml"> -<!ENTITY aab22c36671d7c1054db5e4e91ff34ca9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheby1.xml"> -<!ENTITY a38bcbc23ee3dff9a39209eed62398675 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheby2.xml"> -<!ENTITY a07382031f7c37c171b8f596adb3241ae SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/check.xml"> -<!ENTITY aa2141aba98a93cb5ebec123c977cb0d4 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/chirp.xml"> <!ENTITY a05e673d1d3c435a4f72f7a803fac3c4c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cl2bp.xml"> -<!ENTITY a9aa47349954b7dc555e77d5c07750bc6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/clustersegment.xml"> -<!ENTITY ad68b63f69616e4938c5df2b8f4a6ea29 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cmorwavf.xml"> -<!ENTITY a832131d9fca85cf0fc67ebaa7860a244 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/convmtx.xml"> -<!ENTITY ab9c573f1ed86c7c9107542791f010509 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/corrmtx.xml"> <!ENTITY a11375970432ad3165248b0408d73a6f9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cplxreal.xml"> -<!ENTITY a3dd640289cc33aa91c9b93ef38ae3588 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cummax.xml"> -<!ENTITY ac80b8635538da5f44037be6c1355e0cd SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cummin.xml"> <!ENTITY ae086fe3d5e719b7163fe6bbe6379a30b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/czt.xml"> -<!ENTITY ab46eb5d7f458e4c97c25dc101934e55a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/db.xml"> -<!ENTITY a9a3d5508d4be2587fffb07c4fea873a1 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/db2pow.xml"> -<!ENTITY a9c0646c3d801e6dbf40cb2bfd0f48184 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/dctmtx.xml"> -<!ENTITY ae610966e7222fa2f7bd10ba3020b0397 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/decimate.xml"> -<!ENTITY ad910f20157813b38f3dd0037664fab4d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/dftmtx.xml"> -<!ENTITY a9f1a602ceb9c4f04cdb362869689ad5b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/diric.xml"> -<!ENTITY a34c0df6ea3acf72e8be0c3aadf06b3f9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/downsample.xml"> <!ENTITY ac6f45dfd4ee34be9be8deaf068a03d3a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/dst1.xml"> -<!ENTITY a6c480dc7966fa1256fccca6a2a607ea5 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/dutycycle.xml"> -<!ENTITY ad43a01be488312784bce7fa20f5fda45 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellip.xml"> <!ENTITY a33f68328b4f96f612655c918690757cb SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellipap.xml"> -<!ENTITY a2475a47e5ba8f7128e2b8d07a807d1b7 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellipord.xml"> -<!ENTITY a6a5628da371f54e68e600dc33be952e8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/enbw.xml"> -<!ENTITY abb6a4d7c3064262f17ab739f011c3a4a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/eqtflength.xml"> -<!ENTITY a448d7adf3da3286f51f6a94bea63663d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/falltime.xml"> <!ENTITY aac9ca99701b69583c37e4f90cc6f2b31 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft1.xml"> <!ENTITY a3192e9ff3cd44b40b7e9390bfc464f1f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft21.xml"> -<!ENTITY a3d7d87fbbc65bfd3e6fdf8bc8f48be6e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fftfilt.xml"> <!ENTITY acb27ed052fb6279db1c0a646bd336d1f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fftw1.xml"> <!ENTITY ae5182eb8e46dfc6f361e8273d1e85e8e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fht.xml"> -<!ENTITY afe92108055741cc536bf66798f641a5e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/filternorm.xml"> -<!ENTITY a6da3c55e120d9ad84b38f937a1440569 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/filtfilt.xml"> -<!ENTITY a1cb4e24a853af62bb07857799af1b5a9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/filtic.xml"> -<!ENTITY a2db9d9caff7a7a3eb135b4bc6e9ebe96 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/filtord.xml"> -<!ENTITY a983dde98de76617e105fb2a1b1165e9d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/firpmord.xml"> -<!ENTITY a1653c1101bb7f7f90ad5c793094c3011 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/firtype.xml"> -<!ENTITY a9cd28a49bceabf9d6a5ae48efc168636 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/flattopwin.xml"> -<!ENTITY ac2d9926417a46b72d2c3ce6be1f719c3 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fracshift.xml"> <!ENTITY a097842abc76805ff3b2f72a2c9c8205c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/freqs.xml"> -<!ENTITY a77e06b63ac5f175d8106b4e43014b6da SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwhm.xml"> -<!ENTITY a33f0777e49b0d0506ae19c244104c179 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwhmjlt.xml"> <!ENTITY aeca2a7e1b17564f24ae127e8d114f3d8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwht.xml"> -<!ENTITY af7def142da08407766b1ec9a0a940863 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/gauspuls.xml"> -<!ENTITY a1c243694467789e5c3b41db26ea136b8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/gaussdesign.xml"> -<!ENTITY aed386f5f60012f9148f8a7239f8922dd SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/gaussian.xml"> -<!ENTITY a891fefd8a1c82376c748c0dc0df9d198 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/gausswin.xml"> -<!ENTITY a377e22d7852a5b8231f663f2e392cec8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/gmonopuls.xml"> -<!ENTITY a1f500f91aba02eeb51c8756038367f06 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/goertzel.xml"> -<!ENTITY ac9b5a24449247693afe12d4a0a89cb29 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/grpdelay.xml"> -<!ENTITY a74b3b666e222dd6fdc8cfa967a275919 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/hann.xml"> -<!ENTITY a58a65df48c1f5e0fb455ce5ae740b4d2 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/helperHarmonicDistortionAmplifier.xml"> <!ENTITY a4c00e2caafdf45e6fbec22940c767231 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/hilbert1.xml"> <!ENTITY ae59ce3d617ae3e103df7d517bac2744f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/hurst.xml"> -<!ENTITY a460a1e1ff357ce3430e9e399628fa02c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/icceps.xml"> <!ENTITY a57e47f4f26e6dd49cc38dd803fa42580 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct1.xml"> <!ENTITY a59d4bef3e5e6c1d6031b4045141c20e2 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct2.xml"> <!ENTITY a0176b20a1535e927094297f2d6b381fb SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/idst1.xml"> @@ -97,158 +29,89 @@ <!ENTITY a330e5720762d9a372a40e1ee1be0ee8b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifft21.xml"> <!ENTITY a0d171476d96c87a3de7983184b9176d0 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifht.xml"> <!ENTITY abe76e908f76eb5c6710cc13f1acf2bd6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifwht.xml"> -<!ENTITY a62cc46ed8d95b0239e4df0552679ea1d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/iirlp2mb.xml"> -<!ENTITY aa188901e0117ab660ea457598988f6c9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/impinvar.xml"> -<!ENTITY a44f003ed5aa29cbfd3cefa414436788d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/impz.xml"> -<!ENTITY a7524abc02ec73e4e52e0aa32f70a48c7 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/impzlength.xml"> -<!ENTITY a49a9e3c3edb127efa41460df3ae0b246 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/interp.xml"> -<!ENTITY ad0ea8d615c238f00d56a94edffed11d2 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/intfilt.xml"> <!ENTITY ac7930d64830c9666cfb944d836f4d775 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreq.xml"> <!ENTITY abaa22bc1877bc9d4131223d13b402b60 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreqs.xml"> <!ENTITY a125fdeea0240f72f7ba6ec95fc53fad0 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreqz.xml"> -<!ENTITY aa5fea5e37e2362f8cc508f80fb61e1a4 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/invimpinvar.xml"> -<!ENTITY a6738f22afa4d9b2fec50f876ed64f1c3 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/is2rc.xml"> -<!ENTITY aa81b94c5cbb0d9bdbcf323aa37a1c434 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/isallpass.xml"> -<!ENTITY a6331d2a5505b25f3a0a10372e9498048 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/isfir.xml"> -<!ENTITY a234451d6304052dfc82c4ebf1780f111 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/islinphase.xml"> -<!ENTITY ad008841ad94a185e99ca801b29a57cd1 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ismaxphase.xml"> -<!ENTITY a7b4993c8297a6696cc70e771f9914a77 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/isminphase.xml"> -<!ENTITY ad9c3b7bc150ac1452720b8ffe09e98b6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/isstable.xml"> -<!ENTITY a529cf543ec9712c89d8d996913ef7ec1 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/kaiser.xml"> <!ENTITY a060d37eea26c9ff3b60ac48f121b2205 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/kaiserord.xml"> -<!ENTITY a7661f5463a17550a94594b08eb000091 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/lar2rc.xml"> -<!ENTITY a8d87a3061cb6a7f81eb9a5d01ec17708 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/latc2tf.xml"> -<!ENTITY ab7c7ba24125e211f115a6bc397dcc611 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/latcfilt.xml"> -<!ENTITY aedf625d258dae2c80e8d080faa15af97 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/latcfilt1.xml"> -<!ENTITY a28cbb1579bb1a8b7ff1f8a7298903a4c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/levdown.xml"> -<!ENTITY a9a5a0bc20aed91cae617c9790d48fe6c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/levin.xml"> -<!ENTITY a14d1f8898ae6d0cf35d36090fee051dd SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/levinson.xml"> -<!ENTITY a1512f2a5e444460c235d54e222ce4daa SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/lpc.xml"> -<!ENTITY a458feffd7c5784d2792fd8b1fdfe1f44 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/lsf2poly.xml"> -<!ENTITY aa2d218c02d2b53e0c7d66311f36c9411 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/mag2db.xml"> -<!ENTITY ad25cb64a691e47028cd003be90f1d23f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/marcumq.xml"> -<!ENTITY ae3cbac09593d3eaf17f348d2d7645f67 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/medfilt1.xml"> -<!ENTITY a461f16f33c0e5f37627562ea269d7f66 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/mexihat.xml"> -<!ENTITY ace1d508b89612ef556c7078b667ccb34 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/meyeraux.xml"> -<!ENTITY aefe308bcd9cc7eafb9f3b1ade901b3f0 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/midcross.xml"> -<!ENTITY aae06b7642cb3c5492582151280eb9c2a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/modulate.xml"> -<!ENTITY a14172f88fa51c76d8e3cd44b7ff9da3b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/morlet.xml"> -<!ENTITY aa1bdfdcec9d37ca8fde8f1a5eccf335e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/movingrms.xml"> -<!ENTITY ae3e1f82c6bb377a1b604310d59879657 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/musicBase.xml"> <!ENTITY a7c279b72cef3871697c360725d1aca0f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ncauer.xml"> -<!ENTITY ac7f0bf1229be88336dd19bec79f8592e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/nnls.xml"> -<!ENTITY a533f1756737a76c7ebbf4582981dc178 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/nuttallwin.xml"> -<!ENTITY a37a0158758c25b87b25ccc1aee6a119c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/parzenwin.xml"> <!ENTITY af859fa6921261df3081e38479f8231eb SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pburg.xml"> -<!ENTITY ad89e66ee263fe203686f31a3eab8e64d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pchip.xml"> -<!ENTITY aa5c4ca6eec759599ed43523a388348ad SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pchips.xml"> -<!ENTITY a200605149beb0f3b5d8a88a3d53b2f71 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/peak2peak.xml"> -<!ENTITY ad6130e215a78d84270aafbc379fbb725 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/peak2rms.xml"> <!ENTITY a66b94edea7efc8ac92b9ea88227e8c4a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pei_tseng_notch.xml"> -<!ENTITY a29bbe646f6f6d50c069111ae091e7d36 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/peig.xml"> -<!ENTITY a4c3953ad493b988d8a2031523ffb8306 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/periodogram.xml"> -<!ENTITY a57cdc6361f8d7ec335fee1025821ddbf SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/phaseInputParseAs_ab.xml"> -<!ENTITY a73c75ecee2fc8c8806f9453525a315b1 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/phaseInputParseAs_sos.xml"> -<!ENTITY a07f88832ddbb2555bc16dad1013ac1ce SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/phasedelay.xml"> -<!ENTITY aaab9e849a0c6df4118262e2b70e5239f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/phasez.xml"> -<!ENTITY a1895630a74dcb37a874ee12f6223bb12 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pmusic.xml"> -<!ENTITY ad5c5b14d0f159728636ed4ae71f93c61 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/poly2ac.xml"> -<!ENTITY a0234889afd64e3141d5dc97aae93301f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/poly2lsf.xml"> -<!ENTITY ae7862a7e6a0e7c690bf77d42fb1990fe SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/poly2rc.xml"> -<!ENTITY af650c852b25f278335bc10007d1a19dc SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/polyscale.xml"> -<!ENTITY a05778f15bdfe8a90f4ddf1a5b638716f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/polystab.xml"> -<!ENTITY aa0361fd95c4451f669fa98bb1f65dc98 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/polyval.xml"> -<!ENTITY a023072b316f7e0395c6360455642039f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pow2db.xml"> -<!ENTITY a3bd0d50aa0e0ff26b0b7c5b81bcbc6b3 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/primitive.xml"> -<!ENTITY a35739b7b800c14c46e81e85ef462b634 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/prony.xml"> -<!ENTITY aa1b619c50f30a27be49e3b3d538c394b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulseperiod.xml"> -<!ENTITY ad0b592048d2a5108ef1573e46915e2b9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulsesep.xml"> -<!ENTITY a209518e7ca8192917e531c32767128f4 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulsewidth.xml"> -<!ENTITY a45703911489b3f971198165f76d6d8c0 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulstran.xml"> <!ENTITY ab09b38565f83974426d349f1330ee626 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pyulear.xml"> <!ENTITY ab6965276d6abc03dba25337d98f06a9b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/qp_kaiser.xml"> -<!ENTITY a9a588475c9fdfec3b0d524d2f91956a1 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2ac.xml"> -<!ENTITY a6a345bdf977080572f9bb157e316fa56 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2is.xml"> -<!ENTITY adfc7a13f2757703644a280fda363f5d3 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2lar.xml"> -<!ENTITY a84d04841d921ac252697bd6d913f6e07 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2poly.xml"> <!ENTITY aba910d84a7b8dc5c58261362595d6a6f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rceps.xml"> -<!ENTITY adb76827a846fe886ed6ce90b95f07d8f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rcosdesign.xml"> -<!ENTITY a040edc92d4048494ec65abb4c47a6e7c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rectpuls.xml"> -<!ENTITY a84e9fc45acaeb7c1afa74420873f7b8b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rectwin.xml"> <!ENTITY a992cb0804ac63bcee0241a7d3f625ac9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/remez1.xml"> -<!ENTITY afb654b0f7ed9a4d6af43c3042d878008 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/resample.xml"> -<!ENTITY aedffe76610b2bc050432fea9879d2c82 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/residued.xml"> -<!ENTITY a78b3ed60769c10149c518c3117b14fe5 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/residuez.xml"> -<!ENTITY a7ca3d45ac7c8237b3144b3fe631a0c68 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/risetime.xml"> -<!ENTITY a7ca94f3b7fef68630e0cb23f4fd3d25b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rlevinson.xml"> -<!ENTITY a59e83100e6dffc0baad33cbf8a84522a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rms.xml"> -<!ENTITY a336e17feee76e01b014e835286066137 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rooteig.xml"> -<!ENTITY aaf4d652584b9190343fb99d3a8801e5f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rootmusic.xml"> -<!ENTITY a5edcc4e7812e65d3274082c4e5d7d57f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rssq.xml"> -<!ENTITY aa8c18c42efbf08189242a6819ddeb9ec SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sampled2continuous.xml"> -<!ENTITY af9bc3ae414d07aa5e0b83d8204da216f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sawtooth.xml"> -<!ENTITY a58d8825cb2b40fb02d1fb623474b3680 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/schtrig.xml"> -<!ENTITY afe070e546eba011714d6130f15bf7eeb SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/schurrc.xml"> -<!ENTITY ade2e0f651396ca918685cd60ad2e1f69 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/seqperiod.xml"> <!ENTITY a61a6017541d7986bc2fe01dea58f861d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sftrans.xml"> -<!ENTITY af670a413ac46b05b04fb1eeb295cc187 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sgolay.xml"> -<!ENTITY a871ae6b17028eb52e68e6bc124576f0c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sgolayfilt.xml"> -<!ENTITY af828ad07b10f88b94815cf6d13dcf2a8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/shanwavf.xml"> -<!ENTITY a6dfa16868c80a256207c2def9e0f68a6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/shiftdata.xml"> <!ENTITY a1cac6df59eacdeef9bebfaf8fdd4322a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sigmoid_train.xml"> <!ENTITY a88faf3b43623f226cdade19a21c3b6cf SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinetone.xml"> <!ENTITY af4f643c0bd50a55c10e28d7089215e30 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinewave.xml"> -<!ENTITY a458311d776cf15b4ead98bf47848744e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/slewrate.xml"> -<!ENTITY a0356f690ddd41c1bb4421b15c2e0fdc4 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2cell.xml"> -<!ENTITY a33cd8ef570f585eadb34a40825f2b396 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2ss.xml"> -<!ENTITY a30c4ef20404fdd5a7231680a2c48a975 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2tf.xml"> -<!ENTITY a3b38fcb714749c7e04190fb456a70dd9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2zp.xml"> -<!ENTITY afb2aecd6bef384074ea28729e7e1fde8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sosbreak.xml"> -<!ENTITY a43d84cf894173760ed78bcd0173e5eb1 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sosfilt.xml"> -<!ENTITY abd98a1a18a270aa31a679ba6e48a6f8c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/specgram.xml"> <!ENTITY adbd325d6129658aef1a1c44ebdfaf634 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_adf.xml"> <!ENTITY a6e52208f7cf5935ac4b2dbbaf19a6a8f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_xdf.xml"> <!ENTITY a3a436e475ddcbb6edb82e15c9ad4f910 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/spencer.xml"> -<!ENTITY adfe42afbecc43cec13b71504e2ee9f7b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ss2sos.xml"> -<!ENTITY ae42ba4458c126de0d0d8449858c32174 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/statelevels.xml"> <!ENTITY a286a5169d98da3bb93e5e169fc582493 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/stft.xml"> -<!ENTITY a45a0dbae444ccba87b80be7d73a9a317 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/stmcb.xml"> -<!ENTITY a2a3cdd1656da19c8bcccf108c810ed46 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/strips.xml"> -<!ENTITY ae8bb2ea49f71ca2170c7b25396b53c36 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/subspaceMethodsInputParser.xml"> <!ENTITY a61c1b23c2b8ad57c50ce79acde50c677 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/synthesis.xml"> -<!ENTITY a754944658572078c603d41eb799c03dc SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/tf2sos.xml"> -<!ENTITY a16514a248c077408c45a820a305e5c12 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/tf2zp.xml"> -<!ENTITY a596bc775e258db66e6a9361e23f6a110 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/tf2zpk.xml"> <!ENTITY a908bb8057a00d2c709d46a3911b0d4d8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/tfestimate.xml"> -<!ENTITY ae3ee0ed5769293d96b4e2e86059e914a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/transpose.xml"> -<!ENTITY a3db7534139a84881841b932fa2ec83d6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/trial_iirlp2mb.xml"> -<!ENTITY ac4b200defab1e9badb41fc727f69d855 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/triang.xml"> -<!ENTITY ac2ac4b1a32cde37dad46545278811713 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/tripuls.xml"> -<!ENTITY a0b5130b45748b78cd3b88cedd32115c5 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/truth.xml"> -<!ENTITY adef7e0c625980f5162fab5e605854ed3 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/tukeywin.xml"> -<!ENTITY a34f7952b78461d49fe96810e4c408ffe SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/udecode.xml"> -<!ENTITY ab7a062edf13c87523ae9e41490bc9930 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/uencode.xml"> -<!ENTITY a8d792ca9bc2521d93c827374ae2c94ce SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ultrwin.xml"> -<!ENTITY af5b25c45ca00380e898962f27713ee01 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/unshiftdata.xml"> -<!ENTITY ac8d05194fb0af9dcd1e5f35e20129757 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/upfirdn.xml"> -<!ENTITY ae616b427e6925e3fc00469ef4532e624 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/upsample.xml"> -<!ENTITY a815233915f392f428567c0381e5ac245 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/upsamplefill.xml"> -<!ENTITY a8127816d1698afb2025103f44be38859 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/var.xml"> -<!ENTITY a0a5ed325e4ef3aa7ba8d66ae953d9092 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/vco.xml"> <!ENTITY aca35ca9bbd1eb7284507f50f56a1947f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/wconv.xml"> -<!ENTITY a18288f217fcfa5b28647d2b86a3a288e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/welchwin.xml"> -<!ENTITY aa10dc0e867636bb5905df2147e7fa8a1 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/window.xml"> -<!ENTITY a739bb681c1778aebc6a112c9b4ebcc4c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/wkeep.xml"> -<!ENTITY a974a3174dedaa833258ab42d577abd9d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/wrev.xml"> <!ENTITY ad226196ce2e896f6d2052cc004cac236 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcorr1.xml"> -<!ENTITY a7d306b5dfd9ec60077d737d8a4a6b843 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcorr2.xml"> <!ENTITY a8a74af8f737940c9fe7be0732e87ed26 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcov1.xml"> <!ENTITY a63ca6d1cb168f3cdb2f3f92defdb7694 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/yulewalker.xml"> -<!ENTITY a383c86e12eaf73e96e722b32e61c3386 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/zerocrossing.xml"> -<!ENTITY aecd6b297822f6189d821d9ef476689d8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2sos.xml"> <!ENTITY a6852d675894772d70b92036fdc80543c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2ss.xml"> <!ENTITY a9c59e841b79fd8ce5d6e2521ae6b2347 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2tf.xml"> -<!ENTITY a38385ae55e569d27d4af576de7685f2d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/zplane.xml"> +<!ENTITY a85e6512c560e0bf936c3beeaa098c6c9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ar_psd.xml"> +<!ENTITY a1495e32bc54c2e2975785e8e2e4521bd SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/arch_test.xml"> +<!ENTITY a8db037e6c34a1ac0f7db27577e08e15d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/besselap.xml"> +<!ENTITY a1f0975c78250aac81c6d5a79d8c93eab SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/bilinear.xml"> +<!ENTITY a6b85a8141239aa12da5fd722e12764c5 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/buttap.xml"> +<!ENTITY a8bfbf0158cec14ad1852c16a1bcd1a9f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cceps.xml"> +<!ENTITY a952ffa1c6ec05774d717ea1a51c966c7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb.xml"> +<!ENTITY a63809fd4817619e419316a6fb51f2478 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb1ap.xml"> +<!ENTITY a6f811f8e27e331fa279fc0462a6dd852 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb2ap.xml"> +<!ENTITY a2b41713030e0a16e3e381cc96ff62544 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cohere.xml"> +<!ENTITY ad2840257a4ded4da25428645e8a8fd22 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cplxreal.xml"> +<!ENTITY a76e2baa7f20cd4d2b517c7f65f4b0a87 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/czt.xml"> +<!ENTITY aead61bf67b6895372794be69a80b5ab9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/detrend1.xml"> +<!ENTITY a1d56d414b955dad7a64ae7c13171931e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/diffpara.xml"> +<!ENTITY afe6460b06ca50c9c2d156ea6806d2ed9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/dst1.xml"> +<!ENTITY a227944d1935a789cec8341413d58151d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/durbinlevinson.xml"> +<!ENTITY a54ce5c2d68eb85b370486a8657432e59 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellipap.xml"> +<!ENTITY a61dce7ba646ca92aaf5a1ba090aa25e4 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft.xml"> +<!ENTITY ad146f651e2b3ae0f2c4548c9d31b9324 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft2.xml"> +<!ENTITY ac1d05174ad6903658715873090e2337d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fftshift1.xml"> +<!ENTITY ad9f3946f61509aa68a6555cc8e1e89c4 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fht.xml"> +<!ENTITY a36e682243b9d539831279ec2794d4dcf SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fractdiff.xml"> +<!ENTITY a60063fcaf779858435eab52d0438f7c0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/freqs.xml"> +<!ENTITY a6c84bcba9eda7daf35794f2c2b1cfc36 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwht.xml"> +<!ENTITY ad615141134f915d2325d00926eea7422 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hamming.xml"> +<!ENTITY a350fe0538e119f50421b72fb0177d862 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hanning.xml"> +<!ENTITY a5d806f19e64dff92d1430af2e3d36434 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hilbert1.xml"> +<!ENTITY a93018e4b205ad1077ed39b70108ab6f5 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hurst.xml"> +<!ENTITY a55af75fd2a9b6cd5cd41835b0a2cc3b9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct1.xml"> +<!ENTITY af8c65bd6904096611c2566ec57c5b032 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct2.xml"> +<!ENTITY a6fd54fa41c0d83b890ecda9094cd757f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/idst1.xml"> +<!ENTITY a9a5ec7990aa1e0ee187582dfea2e2f18 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifft.xml"> +<!ENTITY a6c98b32822a438724a01bbbc3c6e8972 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifft2.xml"> +<!ENTITY ac144cb9b3a31dd3325159821e24eac51 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifftshift1.xml"> +<!ENTITY a414728f3a3bc742adaead017680e9eb1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifht.xml"> +<!ENTITY a2992435e7a3da65808422b5922e44afd SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifwht.xml"> +<!ENTITY a17c1049c0e838c40c3d0c6330a1ed18e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreq.xml"> +<!ENTITY a61d7d15c9f4c0556b04a98e7f4cd299c SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/mscohere.xml"> +<!ENTITY a39a1a3343fe803f4afaf048b8d1570f3 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ncauer.xml"> +<!ENTITY a61595e565a64e6b77b85a8028a66eea6 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pei_tseng_notch.xml"> +<!ENTITY ad59b2b322970b02a5fb9d524a71f7beb SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rceps.xml"> +<!ENTITY a6fbe2bc6ace27b1a7b3efaae322ab6dc SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/remez1.xml"> +<!ENTITY a0c7f7373d0deae4317b309d407e54ed0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sigmoid_train.xml"> +<!ENTITY a4298bff4e637e7043203de25a4709e86 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinetone.xml"> +<!ENTITY a82677926514040027d5aeb5f81dc9208 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinewave.xml"> +<!ENTITY a050855b5f4f81d6e0c1778748ef21573 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_adf.xml"> +<!ENTITY acfaa379418f785d6abf7e7745da20005 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_xdf.xml"> +<!ENTITY ab64c40cd49111b8db8a276e394939be8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/spencer.xml"> +<!ENTITY adbd99bd46c01b285deaa3bcc1d9c6c42 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/stft.xml"> +<!ENTITY af974230baefb26fbc56264ee4ddd9e72 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/synthesis.xml"> +<!ENTITY a62d4009c826ca50e7466327e7eaa3dde SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/tfe.xml"> +<!ENTITY a41d68bfcb502a6ea6c94d0fdc154323b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/wconv.xml"> +<!ENTITY af95666e924be0e4cd14c6415f124f7d8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcov1.xml"> +<!ENTITY ab4413930d155521ee36e3b7a19400809 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/yulewalker.xml"> +<!ENTITY ac4b6feabfcffe4748eea06cf81d6c28b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2ss.xml"> +<!ENTITY a9eb5dbeb1370f1a1f23b414438b423b7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2tf.xml"> <!--End Entities--> ]> <book version="5.0-subset Scilab" xml:lang="en_US" @@ -263,97 +126,27 @@ <title>FOSSEE Signal Processing Toolbox</title> </info> -<part xml:id='section_234c65355e471cd38bd717d720add7db'> -<title>FOSSEE Signal Processing Toolbox</title> -&a81320b4221ec0c937db241f3f09761d9; -&a96531f053d1d3aca0c8998446e7ba88a; -&a44e8c63cbbbfce58373a4d528cc59bda; -&a44baa1c529b4c2034108849f08147667; &a80dc2d1be7f85c4fdeda3627eeaeba5b; -&a64ecf6e721160dfb163621e4a3a00d0f; &aa8ae4694cb3e88d729d68b31dffb8be2; -&aff6d91054f11396fab566c3b7097e225; -&a8128572f33478b9c8c764de03cf89fc4; -&a782c9cd4d7dad9d24a672148080e384c; -&a0be563c94e1e42b7735567091463661e; &a8b11798eda410c3ebbbdf55e6d9f64c6; -&a4b0f0cf49b01fcbb7aedef41c40d0e25; -&a8ee66630c6b42252d90d4304e8af282c; -&a1c12c9e7e5cac759289269fdedd8905c; -&a029443469c6628757ecf658204c40f45; -&a73a177320474a25b6b9c42ed2409895a; -&a6f9d33b92c0e5f71e2f83bffbea97f58; -&a62ed1363186685b47656c8a5790efa44; -&a9558e8614d7f439a08d4332c74eb1118; &a3090cfb96d2431a77d3573f5c22eba2c; -&a7c579640b7fb009b1613e4a9e6a3acb6; -&aec6a38aa439b8a6c26a7d2ada787095f; &aad06f15b8c56fd06a63ed4c93a7b17de; -&a3c7785a5dca1c2ff0bcb54385411d26c; -&aa7ee14bf521256b990217ff8fdfd1c4f; &aae1630f64e7d6887cfb5f4801b70358c; &aa2b1694a7963cd81b95b1b3d497d01c9; -&adbfd2762e8949c7d9277a546b59fee44; &af4a3555ae3fc9828d4f5bcfe3c082bae; -&a92cf35397a3f0f935f69fa0c6b980916; -&a144520c3e437156f61bc5c85aff56360; -&aab22c36671d7c1054db5e4e91ff34ca9; -&a38bcbc23ee3dff9a39209eed62398675; -&a07382031f7c37c171b8f596adb3241ae; -&aa2141aba98a93cb5ebec123c977cb0d4; &a05e673d1d3c435a4f72f7a803fac3c4c; -&a9aa47349954b7dc555e77d5c07750bc6; -&ad68b63f69616e4938c5df2b8f4a6ea29; -&a832131d9fca85cf0fc67ebaa7860a244; -&ab9c573f1ed86c7c9107542791f010509; &a11375970432ad3165248b0408d73a6f9; -&a3dd640289cc33aa91c9b93ef38ae3588; -&ac80b8635538da5f44037be6c1355e0cd; &ae086fe3d5e719b7163fe6bbe6379a30b; -&ab46eb5d7f458e4c97c25dc101934e55a; -&a9a3d5508d4be2587fffb07c4fea873a1; -&a9c0646c3d801e6dbf40cb2bfd0f48184; -&ae610966e7222fa2f7bd10ba3020b0397; -&ad910f20157813b38f3dd0037664fab4d; -&a9f1a602ceb9c4f04cdb362869689ad5b; -&a34c0df6ea3acf72e8be0c3aadf06b3f9; &ac6f45dfd4ee34be9be8deaf068a03d3a; -&a6c480dc7966fa1256fccca6a2a607ea5; -&ad43a01be488312784bce7fa20f5fda45; &a33f68328b4f96f612655c918690757cb; -&a2475a47e5ba8f7128e2b8d07a807d1b7; -&a6a5628da371f54e68e600dc33be952e8; -&abb6a4d7c3064262f17ab739f011c3a4a; -&a448d7adf3da3286f51f6a94bea63663d; &aac9ca99701b69583c37e4f90cc6f2b31; &a3192e9ff3cd44b40b7e9390bfc464f1f; -&a3d7d87fbbc65bfd3e6fdf8bc8f48be6e; &acb27ed052fb6279db1c0a646bd336d1f; &ae5182eb8e46dfc6f361e8273d1e85e8e; -&afe92108055741cc536bf66798f641a5e; -&a6da3c55e120d9ad84b38f937a1440569; -&a1cb4e24a853af62bb07857799af1b5a9; -&a2db9d9caff7a7a3eb135b4bc6e9ebe96; -&a983dde98de76617e105fb2a1b1165e9d; -&a1653c1101bb7f7f90ad5c793094c3011; -&a9cd28a49bceabf9d6a5ae48efc168636; -&ac2d9926417a46b72d2c3ce6be1f719c3; &a097842abc76805ff3b2f72a2c9c8205c; -&a77e06b63ac5f175d8106b4e43014b6da; -&a33f0777e49b0d0506ae19c244104c179; &aeca2a7e1b17564f24ae127e8d114f3d8; -&af7def142da08407766b1ec9a0a940863; -&a1c243694467789e5c3b41db26ea136b8; -&aed386f5f60012f9148f8a7239f8922dd; -&a891fefd8a1c82376c748c0dc0df9d198; -&a377e22d7852a5b8231f663f2e392cec8; -&a1f500f91aba02eeb51c8756038367f06; -&ac9b5a24449247693afe12d4a0a89cb29; -&a74b3b666e222dd6fdc8cfa967a275919; -&a58a65df48c1f5e0fb455ce5ae740b4d2; &a4c00e2caafdf45e6fbec22940c767231; &ae59ce3d617ae3e103df7d517bac2744f; -&a460a1e1ff357ce3430e9e399628fa02c; &a57e47f4f26e6dd49cc38dd803fa42580; &a59d4bef3e5e6c1d6031b4045141c20e2; &a0176b20a1535e927094297f2d6b381fb; @@ -361,157 +154,88 @@ &a330e5720762d9a372a40e1ee1be0ee8b; &a0d171476d96c87a3de7983184b9176d0; &abe76e908f76eb5c6710cc13f1acf2bd6; -&a62cc46ed8d95b0239e4df0552679ea1d; -&aa188901e0117ab660ea457598988f6c9; -&a44f003ed5aa29cbfd3cefa414436788d; -&a7524abc02ec73e4e52e0aa32f70a48c7; -&a49a9e3c3edb127efa41460df3ae0b246; -&ad0ea8d615c238f00d56a94edffed11d2; &ac7930d64830c9666cfb944d836f4d775; &abaa22bc1877bc9d4131223d13b402b60; &a125fdeea0240f72f7ba6ec95fc53fad0; -&aa5fea5e37e2362f8cc508f80fb61e1a4; -&a6738f22afa4d9b2fec50f876ed64f1c3; -&aa81b94c5cbb0d9bdbcf323aa37a1c434; -&a6331d2a5505b25f3a0a10372e9498048; -&a234451d6304052dfc82c4ebf1780f111; -&ad008841ad94a185e99ca801b29a57cd1; -&a7b4993c8297a6696cc70e771f9914a77; -&ad9c3b7bc150ac1452720b8ffe09e98b6; -&a529cf543ec9712c89d8d996913ef7ec1; &a060d37eea26c9ff3b60ac48f121b2205; -&a7661f5463a17550a94594b08eb000091; -&a8d87a3061cb6a7f81eb9a5d01ec17708; -&ab7c7ba24125e211f115a6bc397dcc611; -&aedf625d258dae2c80e8d080faa15af97; -&a28cbb1579bb1a8b7ff1f8a7298903a4c; -&a9a5a0bc20aed91cae617c9790d48fe6c; -&a14d1f8898ae6d0cf35d36090fee051dd; -&a1512f2a5e444460c235d54e222ce4daa; -&a458feffd7c5784d2792fd8b1fdfe1f44; -&aa2d218c02d2b53e0c7d66311f36c9411; -&ad25cb64a691e47028cd003be90f1d23f; -&ae3cbac09593d3eaf17f348d2d7645f67; -&a461f16f33c0e5f37627562ea269d7f66; -&ace1d508b89612ef556c7078b667ccb34; -&aefe308bcd9cc7eafb9f3b1ade901b3f0; -&aae06b7642cb3c5492582151280eb9c2a; -&a14172f88fa51c76d8e3cd44b7ff9da3b; -&aa1bdfdcec9d37ca8fde8f1a5eccf335e; -&ae3e1f82c6bb377a1b604310d59879657; &a7c279b72cef3871697c360725d1aca0f; -&ac7f0bf1229be88336dd19bec79f8592e; -&a533f1756737a76c7ebbf4582981dc178; -&a37a0158758c25b87b25ccc1aee6a119c; &af859fa6921261df3081e38479f8231eb; -&ad89e66ee263fe203686f31a3eab8e64d; -&aa5c4ca6eec759599ed43523a388348ad; -&a200605149beb0f3b5d8a88a3d53b2f71; -&ad6130e215a78d84270aafbc379fbb725; &a66b94edea7efc8ac92b9ea88227e8c4a; -&a29bbe646f6f6d50c069111ae091e7d36; -&a4c3953ad493b988d8a2031523ffb8306; -&a57cdc6361f8d7ec335fee1025821ddbf; -&a73c75ecee2fc8c8806f9453525a315b1; -&a07f88832ddbb2555bc16dad1013ac1ce; -&aaab9e849a0c6df4118262e2b70e5239f; -&a1895630a74dcb37a874ee12f6223bb12; -&ad5c5b14d0f159728636ed4ae71f93c61; -&a0234889afd64e3141d5dc97aae93301f; -&ae7862a7e6a0e7c690bf77d42fb1990fe; -&af650c852b25f278335bc10007d1a19dc; -&a05778f15bdfe8a90f4ddf1a5b638716f; -&aa0361fd95c4451f669fa98bb1f65dc98; -&a023072b316f7e0395c6360455642039f; -&a3bd0d50aa0e0ff26b0b7c5b81bcbc6b3; -&a35739b7b800c14c46e81e85ef462b634; -&aa1b619c50f30a27be49e3b3d538c394b; -&ad0b592048d2a5108ef1573e46915e2b9; -&a209518e7ca8192917e531c32767128f4; -&a45703911489b3f971198165f76d6d8c0; &ab09b38565f83974426d349f1330ee626; &ab6965276d6abc03dba25337d98f06a9b; -&a9a588475c9fdfec3b0d524d2f91956a1; -&a6a345bdf977080572f9bb157e316fa56; -&adfc7a13f2757703644a280fda363f5d3; -&a84d04841d921ac252697bd6d913f6e07; &aba910d84a7b8dc5c58261362595d6a6f; -&adb76827a846fe886ed6ce90b95f07d8f; -&a040edc92d4048494ec65abb4c47a6e7c; -&a84e9fc45acaeb7c1afa74420873f7b8b; &a992cb0804ac63bcee0241a7d3f625ac9; -&afb654b0f7ed9a4d6af43c3042d878008; -&aedffe76610b2bc050432fea9879d2c82; -&a78b3ed60769c10149c518c3117b14fe5; -&a7ca3d45ac7c8237b3144b3fe631a0c68; -&a7ca94f3b7fef68630e0cb23f4fd3d25b; -&a59e83100e6dffc0baad33cbf8a84522a; -&a336e17feee76e01b014e835286066137; -&aaf4d652584b9190343fb99d3a8801e5f; -&a5edcc4e7812e65d3274082c4e5d7d57f; -&aa8c18c42efbf08189242a6819ddeb9ec; -&af9bc3ae414d07aa5e0b83d8204da216f; -&a58d8825cb2b40fb02d1fb623474b3680; -&afe070e546eba011714d6130f15bf7eeb; -&ade2e0f651396ca918685cd60ad2e1f69; &a61a6017541d7986bc2fe01dea58f861d; -&af670a413ac46b05b04fb1eeb295cc187; -&a871ae6b17028eb52e68e6bc124576f0c; -&af828ad07b10f88b94815cf6d13dcf2a8; -&a6dfa16868c80a256207c2def9e0f68a6; &a1cac6df59eacdeef9bebfaf8fdd4322a; &a88faf3b43623f226cdade19a21c3b6cf; &af4f643c0bd50a55c10e28d7089215e30; -&a458311d776cf15b4ead98bf47848744e; -&a0356f690ddd41c1bb4421b15c2e0fdc4; -&a33cd8ef570f585eadb34a40825f2b396; -&a30c4ef20404fdd5a7231680a2c48a975; -&a3b38fcb714749c7e04190fb456a70dd9; -&afb2aecd6bef384074ea28729e7e1fde8; -&a43d84cf894173760ed78bcd0173e5eb1; -&abd98a1a18a270aa31a679ba6e48a6f8c; &adbd325d6129658aef1a1c44ebdfaf634; &a6e52208f7cf5935ac4b2dbbaf19a6a8f; &a3a436e475ddcbb6edb82e15c9ad4f910; -&adfe42afbecc43cec13b71504e2ee9f7b; -&ae42ba4458c126de0d0d8449858c32174; &a286a5169d98da3bb93e5e169fc582493; -&a45a0dbae444ccba87b80be7d73a9a317; -&a2a3cdd1656da19c8bcccf108c810ed46; -&ae8bb2ea49f71ca2170c7b25396b53c36; &a61c1b23c2b8ad57c50ce79acde50c677; -&a754944658572078c603d41eb799c03dc; -&a16514a248c077408c45a820a305e5c12; -&a596bc775e258db66e6a9361e23f6a110; &a908bb8057a00d2c709d46a3911b0d4d8; -&ae3ee0ed5769293d96b4e2e86059e914a; -&a3db7534139a84881841b932fa2ec83d6; -&ac4b200defab1e9badb41fc727f69d855; -&ac2ac4b1a32cde37dad46545278811713; -&a0b5130b45748b78cd3b88cedd32115c5; -&adef7e0c625980f5162fab5e605854ed3; -&a34f7952b78461d49fe96810e4c408ffe; -&ab7a062edf13c87523ae9e41490bc9930; -&a8d792ca9bc2521d93c827374ae2c94ce; -&af5b25c45ca00380e898962f27713ee01; -&ac8d05194fb0af9dcd1e5f35e20129757; -&ae616b427e6925e3fc00469ef4532e624; -&a815233915f392f428567c0381e5ac245; -&a8127816d1698afb2025103f44be38859; -&a0a5ed325e4ef3aa7ba8d66ae953d9092; &aca35ca9bbd1eb7284507f50f56a1947f; -&a18288f217fcfa5b28647d2b86a3a288e; -&aa10dc0e867636bb5905df2147e7fa8a1; -&a739bb681c1778aebc6a112c9b4ebcc4c; -&a974a3174dedaa833258ab42d577abd9d; &ad226196ce2e896f6d2052cc004cac236; -&a7d306b5dfd9ec60077d737d8a4a6b843; &a8a74af8f737940c9fe7be0732e87ed26; &a63ca6d1cb168f3cdb2f3f92defdb7694; -&a383c86e12eaf73e96e722b32e61c3386; -&aecd6b297822f6189d821d9ef476689d8; &a6852d675894772d70b92036fdc80543c; &a9c59e841b79fd8ce5d6e2521ae6b2347; -&a38385ae55e569d27d4af576de7685f2d; +&a85e6512c560e0bf936c3beeaa098c6c9; +&a1495e32bc54c2e2975785e8e2e4521bd; +&a8db037e6c34a1ac0f7db27577e08e15d; +&a1f0975c78250aac81c6d5a79d8c93eab; +&a6b85a8141239aa12da5fd722e12764c5; +&a8bfbf0158cec14ad1852c16a1bcd1a9f; +&a952ffa1c6ec05774d717ea1a51c966c7; +&a63809fd4817619e419316a6fb51f2478; +&a6f811f8e27e331fa279fc0462a6dd852; +&a2b41713030e0a16e3e381cc96ff62544; +&ad2840257a4ded4da25428645e8a8fd22; +&a76e2baa7f20cd4d2b517c7f65f4b0a87; +&aead61bf67b6895372794be69a80b5ab9; +&a1d56d414b955dad7a64ae7c13171931e; +&afe6460b06ca50c9c2d156ea6806d2ed9; +&a227944d1935a789cec8341413d58151d; +&a54ce5c2d68eb85b370486a8657432e59; +&a61dce7ba646ca92aaf5a1ba090aa25e4; +&ad146f651e2b3ae0f2c4548c9d31b9324; +&ac1d05174ad6903658715873090e2337d; +&ad9f3946f61509aa68a6555cc8e1e89c4; +&a36e682243b9d539831279ec2794d4dcf; +&a60063fcaf779858435eab52d0438f7c0; +&a6c84bcba9eda7daf35794f2c2b1cfc36; +&ad615141134f915d2325d00926eea7422; +&a350fe0538e119f50421b72fb0177d862; +&a5d806f19e64dff92d1430af2e3d36434; +&a93018e4b205ad1077ed39b70108ab6f5; +&a55af75fd2a9b6cd5cd41835b0a2cc3b9; +&af8c65bd6904096611c2566ec57c5b032; +&a6fd54fa41c0d83b890ecda9094cd757f; +&a9a5ec7990aa1e0ee187582dfea2e2f18; +&a6c98b32822a438724a01bbbc3c6e8972; +&ac144cb9b3a31dd3325159821e24eac51; +&a414728f3a3bc742adaead017680e9eb1; +&a2992435e7a3da65808422b5922e44afd; +&a17c1049c0e838c40c3d0c6330a1ed18e; +&a61d7d15c9f4c0556b04a98e7f4cd299c; +&a39a1a3343fe803f4afaf048b8d1570f3; +&a61595e565a64e6b77b85a8028a66eea6; +&ad59b2b322970b02a5fb9d524a71f7beb; +&a6fbe2bc6ace27b1a7b3efaae322ab6dc; +&a0c7f7373d0deae4317b309d407e54ed0; +&a4298bff4e637e7043203de25a4709e86; +&a82677926514040027d5aeb5f81dc9208; +&a050855b5f4f81d6e0c1778748ef21573; +&acfaa379418f785d6abf7e7745da20005; +&ab64c40cd49111b8db8a276e394939be8; +&adbd99bd46c01b285deaa3bcc1d9c6c42; +&af974230baefb26fbc56264ee4ddd9e72; +&a62d4009c826ca50e7466327e7eaa3dde; +&a41d68bfcb502a6ea6c94d0fdc154323b; +&af95666e924be0e4cd14c6415f124f7d8; +&ab4413930d155521ee36e3b7a19400809; +&ac4b6feabfcffe4748eea06cf81d6c28b; +&a9eb5dbeb1370f1a1f23b414438b423b7; </part> </book> diff --git a/help/en_US/mscohere.xml b/help/en_US/mscohere.xml new file mode 100644 index 0000000..0b68767 --- /dev/null +++ b/help/en_US/mscohere.xml @@ -0,0 +1,57 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from mscohere.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="mscohere" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>mscohere</refname> + <refpurpose>It estimate (mean square) coherence of signals x and y.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [Pxx, freq] = mscohere (x, y) + [Pxx, freq] = mscohere (x, y, window) + [Pxx, freq] = mscohere (x, y, window, overlap) + [Pxx, freq] = mscohere (x, y, window, overlap, Nfft) + [Pxx, freq] = mscohere (x, y, window, overlap, Nfft, Fs) + [Pxx, freq] = mscohere (x, y, window, overlap, Nfft, Fs, range) + mscohere (...) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Description</title> + <para> +This function estimate (mean square) coherence of signals x and y. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[Pxx, freq] = mscohere(4,5) +ans = +PXX = +Nan +1 +FREQ = +0 +0.5 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/periodogram.xml b/help/en_US/periodogram.xml index 8b5b2ed..5ad8738 100644 --- a/help/en_US/periodogram.xml +++ b/help/en_US/periodogram.xml @@ -17,7 +17,47 @@ <refnamediv> <refname>periodogram</refname> - <refpurpose>funcprot(0);</refpurpose> + <refpurpose>Return the periodogram (Power Spectral Density) of X</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [PXX, W] = periodogram (X) + [PXX, W] = periodogram (X, WIN) + [PXX, W] = periodogram (X, WIN, NFFT) + [PXX, W] = periodogram (X, WIN, NFFT, FS) + [PXX, W] = periodogram (..., "RANGE") + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para>data vector. If X is real-valued a one-sided spectrum is estimated. If X is complex-valued, or "RANGE" specifies "twosided", the full spectrum is estimated.</para></listitem></varlistentry> + <varlistentry><term>WIN:</term> + <listitem><para> window weight data. If window is empty or unspecified a default rectangular window is used. Otherwise, the window is applied to the signal ('X .* WIN') before computing th periodogram. The window data must be a vector of the same length as X.</para></listitem></varlistentry> + <varlistentry><term>NFFT:</term> + <listitem><para>number of frequency bins. The default is 256 or the next higher power of 2 greater than the length of X ('max (256,2.^nextpow2 (length (x)))'). If NFFT is greater than the length of the input then X will be zero-padded to the length of NFFT.</para></listitem></varlistentry> + <varlistentry><term>FS:</term> + <listitem><para>sampling rate. The default is 1.</para></listitem></varlistentry> + <varlistentry><term>RANGE:</term> + <listitem><para>range of spectrum. "onesided" computes spectrum from [0..nfft/2+1]."twosided" computes spectrum from [0..nfft-1].</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +The optional second output W are the normalized angular frequencies. For a one-sided calculation W is in the range [0, pi]. If NFFT is even and [0, pi) if NFFT is odd. Similarly, for a two-sided calculation W is in the range [0, 2*pi] or [0, 2*pi)depending on NFFT. + </para> + <para> +If a sampling frequency is specified, FS, then the output frequencies F will be in the range [0, FS/2] or [0, FS/2) for one-sided calculations. For two-sided calculations the range will be [0, FS). + </para> + <para> +When called with no outputs the periodogram is immediately plotted in the current figure window. +</para> +</refsection> </refentry> diff --git a/help/en_US/pwelch.xml b/help/en_US/pwelch.xml new file mode 100644 index 0000000..edc3a51 --- /dev/null +++ b/help/en_US/pwelch.xml @@ -0,0 +1,76 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from pwelch.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="pwelch" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>pwelch</refname> + <refpurpose>Estimate power spectral density of data "x" by the Welch (1967) periodogram/FFT method.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [spectra,freq] = pwelch(x, window, overlap, Nfft, Fs, range, plot_type, detrend, sloppy) + [spectra,freq] = pwelch(x, y, window, overlap, Nfft, Fs, range, plot_type, detrend, sloppy, results) + [spectra,Pxx_ci,freq] = pwelch(x, window, overlap, Nfft, Fs, conf, range, plot_type, detrend, sloppy) + [spectra,Pxx_ci,freq] = pwelch(x, y, window, overlap, Nfft, Fs, conf, range, plot_type, detrend, sloppy, results) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> [non-empty vector] system-input time-series data</para></listitem></varlistentry> + <varlistentry><term>y:</term> + <listitem><para> [non-empty vector] system-output time-series data</para></listitem></varlistentry> + <varlistentry><term>window:</term> + <listitem><para> [real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument.</para></listitem></varlistentry> + <varlistentry><term>overlap:</term> + <listitem><para> [real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 .</para></listitem></varlistentry> + <varlistentry><term>Nfft:</term> + <listitem><para> [integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently.</para></listitem></varlistentry> + <varlistentry><term>Fs:</term> + <listitem><para>[real scalar] sampling frequency (Hertz); default=1.0</para></listitem></varlistentry> + <varlistentry><term>conf:</term> + <listitem><para> [real scalar] confidence level between 0 and 1. Confidence intervals of the spectral density are estimated from scatter in the periodograms and are returned as Pxx_ci. Pxx_ci(:,1) is the lower bound of the confidence interval and Pxx_ci(:,2) is the upper bound. If there are three return values, or conf is an empty matrix, confidence intervals are calculated for conf=0.95 . If conf is zero or is not given, confidence intervals are not calculated. Confidence intervals can be obtained only for the power spectral density of x; nothing else.</para></listitem></varlistentry> + <varlistentry><term>range:</term> + <listitem><para> </para></listitem></varlistentry> + <varlistentry><term>'half', 'onesided' :</term> + <listitem><para> frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2].</para></listitem></varlistentry> + <varlistentry><term>'whole', 'twosided' :</term> + <listitem><para> frequency range of the spectrum is -Fs/2 to Fs/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1</para></listitem></varlistentry> + <varlistentry><term>'shift', 'centerdc' :</term> + <listitem><para> same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'.</para></listitem></varlistentry> + <varlistentry><term>plot_type:</term> + <listitem><para> </para></listitem></varlistentry> + <varlistentry><term>'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':</term> + <listitem><para> specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value.</para></listitem></varlistentry> + <varlistentry><term>detrend:</term> + <listitem><para> 'no-strip', 'none' -- do NOT remove mean value from the data 'short', 'mean' -- remove the mean value of each segment from each segment of the data.</para></listitem></varlistentry> + <varlistentry><term>sloppy:</term> + <listitem><para> FFT length is rounded up to the nearest integer power of 2 by zero padding. FFT length is adjusted after addition of padding by explicit Nfft argument. The default is to use exactly the FFT and window.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Estimate power spectral density of data "x" by the Welch (1967) periodogram/FFT method. The data is divided into segments. If "window" is a vector, each segment has the same length as "window" and is multiplied by "window" before (optional) zero-padding and calculation of its periodogram. If "window" is a scalar, each segment has a length of "window" and a Hamming window is used. The spectral density is the mean of the periodograms, scaled so that area under the spectrum is the same as the mean square of the data. This equivalence is supposed to be exact, but in practice there is a mismatch of up to 0.5% when comparing area under a periodogram with the mean square of the data. +</para> +</refsection> +</refentry> diff --git a/help/en_US/rceps.xml b/help/en_US/rceps.xml index 2a11479..fbf1ce8 100644 --- a/help/en_US/rceps.xml +++ b/help/en_US/rceps.xml @@ -17,7 +17,34 @@ <refnamediv> <refname>rceps</refname> - <refpurpose></refpurpose> + <refpurpose>Produce the cepstrum of the signal x, and if desired, the minimum phase reconstruction of the signal x.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [y, xm] = rceps(x) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> real or complex vector input</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +f0 = 70; Fs = 10000; # 100 Hz fundamental, 10kHz sampling rate +a = poly (0.985 * exp (1i*pi*[0.1, -0.1, 0.3, -0.3])); # two formants +s = 0.005 * randn (1024, 1); # Noise excitation signal +s(1:Fs/f0:length(s)) = 1; # Impulse glottal wave +x = filter (1, a, s); # Speech signal in x +[y, xm] = rceps (x .* hanning (1024)); # cepstrum and min phase reconstruction + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/remez1.xml b/help/en_US/remez1.xml index 9656f5f..0336490 100644 --- a/help/en_US/remez1.xml +++ b/help/en_US/remez1.xml @@ -17,7 +17,42 @@ <refnamediv> <refname>remez1</refname> - <refpurpose></refpurpose> + <refpurpose>Parks-McClellan optimal FIR filter design</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + b = remez1 (n, f, a) + b = remez1 (n, f, a, w) + b = remez1 (n, f, a, w, ftype) + b = remez1 (n, f, a, w, ftype, griddensity) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>n:</term> + <listitem><para> gives the number of taps in the returned filter</para></listitem></varlistentry> + <varlistentry><term>f:</term> + <listitem><para>gives frequency at the band edges [b1 e1 b2 e2 b3 e3 …]</para></listitem></varlistentry> + <varlistentry><term>a:</term> + <listitem><para>gives amplitude at the band edges [a(b1) a(e1) a(b2) a(e2) …]</para></listitem></varlistentry> + <varlistentry><term>w:</term> + <listitem><para>gives weighting applied to each band</para></listitem></varlistentry> + <varlistentry><term>ftype:</term> + <listitem><para>is "bandpass", "hilbert" or "differentiator"</para></listitem></varlistentry> + <varlistentry><term>griddensity:</term> + <listitem><para>determines how accurately the filter will be constructed. The minimum value is 16, but higher numbers are slower to compute.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Frequency is in the range (0, 1), with 1 being the Nyquist frequency. +</para> +</refsection> </refentry> diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS Binary files differindex fa8536e..b8d5d55 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB Binary files differindex 28b7820..e2e4345 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS Binary files differindex 6cdcd55..9ddce22 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS Binary files differindex 5da6a95..d49b02f 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA index 815b507..cdbc5eb 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA @@ -1,2 +1,2 @@ JavaSearch 1.0 -TMAP bs=2048 rt=1 fl=-1 id1=2491 id2=1 +TMAP bs=2048 rt=1 fl=-1 id1=1968 id2=1 diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP Binary files differindex 58d9d44..cc2d0ec 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP diff --git a/help/en_US/scilab_en_US_help/jhelpmap.jhm b/help/en_US/scilab_en_US_help/jhelpmap.jhm index 9f5590a..449698a 100644 --- a/help/en_US/scilab_en_US_help/jhelpmap.jhm +++ b/help/en_US/scilab_en_US_help/jhelpmap.jhm @@ -2,20 +2,29 @@ <!DOCTYPE map PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN" "http://java.sun.com/products/javahelp/map_1_0.dtd"> <map version="1.0"> <mapID target="index" url="index.html"/> +<mapID target="section_cc2bc01c47967d47fcf3507a91d572ba" url="section_cc2bc01c47967d47fcf3507a91d572ba.html"/> <mapID target="section_234c65355e471cd38bd717d720add7db" url="section_234c65355e471cd38bd717d720add7db.html"/> +======= +<mapID target="section_5118e822ecc2888aa80042108de4932e" url="section_5118e822ecc2888aa80042108de4932e.html"/> +>>>>>>> 9f6962b19c4a5fa76f7525a72faabb1b754712ad <mapID target="ac2poly" url="ac2poly.html"/> <mapID target="ac2rc" url="ac2rc.html"/> <mapID target="arParEst" url="arParEst.html"/> +<mapID target="ar_psd" url="ar_psd.html"/> <mapID target="arburg" url="arburg.html"/> <mapID target="arch_rnd" url="arch_rnd.html"/> +<mapID target="arch_test" url="arch_test.html"/> +<mapID target="arch_fit" url="arch_fit.html"/> <mapID target="arcov" url="arcov.html"/> <mapID target="arma_rnd" url="arma_rnd.html"/> <mapID target="armcov" url="armcov.html"/> <mapID target="aryule" url="aryule.html"/> +<mapID target="autoreg_matrix" url="autoreg_matrix.html"/> <mapID target="barthannwin" url="barthannwin.html"/> <mapID target="bartlett" url="bartlett.html"/> <mapID target="besselap" url="besselap.html"/> <mapID target="besself" url="besself.html"/> +<mapID target="bilinear" url="bilinear.html"/> <mapID target="bitrevorder" url="bitrevorder.html"/> <mapID target="blackman" url="blackman.html"/> <mapID target="blackmanharris" url="blackmanharris.html"/> @@ -42,9 +51,11 @@ <mapID target="cl2bp" url="cl2bp.html"/> <mapID target="clustersegment" url="clustersegment.html"/> <mapID target="cmorwavf" url="cmorwavf.html"/> +<mapID target="cohere" url="cohere.html"/> <mapID target="convmtx" url="convmtx.html"/> <mapID target="corrmtx" url="corrmtx.html"/> <mapID target="cplxreal" url="cplxreal.html"/> +<mapID target="cpsd" url="cpsd.html"/> <mapID target="cummax" url="cummax.html"/> <mapID target="cummin" url="cummin.html"/> <mapID target="czt" url="czt.html"/> @@ -52,11 +63,15 @@ <mapID target="db2pow" url="db2pow.html"/> <mapID target="dctmtx" url="dctmtx.html"/> <mapID target="decimate" url="decimate.html"/> +<mapID target="detrend1" url="detrend1.html"/> <mapID target="dftmtx" url="dftmtx.html"/> +<mapID target="diffpara" url="diffpara.html"/> <mapID target="diric" url="diric.html"/> <mapID target="downsample" url="downsample.html"/> <mapID target="dst1" url="dst1.html"/> +<mapID target="durbinlevinson" url="durbinlevinson.html"/> <mapID target="dutycycle" url="dutycycle.html"/> +<mapID target="dwt" url="dwt.html"/> <mapID target="ellip" url="ellip.html"/> <mapID target="ellipap" url="ellipap.html"/> <mapID target="ellipord" url="ellipord.html"/> @@ -65,18 +80,32 @@ <mapID target="falltime" url="falltime.html"/> <mapID target="fft1" url="fft1.html"/> <mapID target="fft21" url="fft21.html"/> +<mapID target="fft" url="fft.html"/> +<mapID target="fft2" url="fft2.html"/> +<mapID target="fftconv" url="fftconv.html"/> <mapID target="fftfilt" url="fftfilt.html"/> <mapID target="fftw1" url="fftw1.html"/> <mapID target="fht" url="fht.html"/> +<mapID target="fftshift1" url="fftshift1.html"/> +<mapID target="fftn" url="fftn.html"/> +<mapID target="fht" url="fht.html"/> +<mapID target="filter1" url="filter1.html"/> +<mapID target="filter2" url="filter2.html"/> <mapID target="filternorm" url="filternorm.html"/> <mapID target="filtfilt" url="filtfilt.html"/> <mapID target="filtic" url="filtic.html"/> <mapID target="filtord" url="filtord.html"/> +<mapID target="findpeaks" url="findpeaks.html"/> +<mapID target="fir1" url="fir1.html"/> +<mapID target="fir2" url="fir2.html"/> <mapID target="firpmord" url="firpmord.html"/> <mapID target="firtype" url="firtype.html"/> <mapID target="flattopwin" url="flattopwin.html"/> <mapID target="fracshift" url="fracshift.html"/> <mapID target="freqs" url="freqs.html"/> +<mapID target="fractdiff" url="fractdiff.html"/> +<mapID target="freqs" url="freqs.html"/> +<mapID target="freqz" url="freqz.html"/> <mapID target="fwhm" url="fwhm.html"/> <mapID target="fwhmjlt" url="fwhmjlt.html"/> <mapID target="fwht" url="fwht.html"/> @@ -87,7 +116,9 @@ <mapID target="gmonopuls" url="gmonopuls.html"/> <mapID target="goertzel" url="goertzel.html"/> <mapID target="grpdelay" url="grpdelay.html"/> +<mapID target="hamming" url="hamming.html"/> <mapID target="hann" url="hann.html"/> +<mapID target="hanning" url="hanning.html"/> <mapID target="helperHarmonicDistortionAmplifier" url="helperHarmonicDistortionAmplifier.html"/> <mapID target="hilbert1" url="hilbert1.html"/> <mapID target="hurst" url="hurst.html"/> @@ -99,6 +130,12 @@ <mapID target="ifft21" url="ifft21.html"/> <mapID target="ifht" url="ifht.html"/> <mapID target="ifwht" url="ifwht.html"/> +<mapID target="ifft" url="ifft.html"/> +<mapID target="ifft2" url="ifft2.html"/> +<mapID target="ifftshift1" url="ifftshift1.html"/> +<mapID target="ifftn" url="ifftn.html"/> +<mapID target="ifht" url="ifht.html"/> +<mapID target="ifwht" url="ifwht.html"/> <mapID target="iirlp2mb" url="iirlp2mb.html"/> <mapID target="impinvar" url="impinvar.html"/> <mapID target="impz" url="impz.html"/> @@ -136,6 +173,7 @@ <mapID target="modulate" url="modulate.html"/> <mapID target="morlet" url="morlet.html"/> <mapID target="movingrms" url="movingrms.html"/> +<mapID target="mscohere" url="mscohere.html"/> <mapID target="musicBase" url="musicBase.html"/> <mapID target="ncauer" url="ncauer.html"/> <mapID target="nnls" url="nnls.html"/> @@ -168,6 +206,7 @@ <mapID target="pulsewidth" url="pulsewidth.html"/> <mapID target="pulstran" url="pulstran.html"/> <mapID target="pyulear" url="pyulear.html"/> +<mapID target="pwelch" url="pwelch.html"/> <mapID target="qp_kaiser" url="qp_kaiser.html"/> <mapID target="rc2ac" url="rc2ac.html"/> <mapID target="rc2is" url="rc2is.html"/> @@ -222,6 +261,7 @@ <mapID target="tf2zp" url="tf2zp.html"/> <mapID target="tf2zpk" url="tf2zpk.html"/> <mapID target="tfestimate" url="tfestimate.html"/> +<mapID target="tfe" url="tfe.html"/> <mapID target="transpose" url="transpose.html"/> <mapID target="trial_iirlp2mb" url="trial_iirlp2mb.html"/> <mapID target="triang" url="triang.html"/> @@ -232,6 +272,7 @@ <mapID target="uencode" url="uencode.html"/> <mapID target="ultrwin" url="ultrwin.html"/> <mapID target="unshiftdata" url="unshiftdata.html"/> +<mapID target="unwrap2" url="unwrap2.html"/> <mapID target="upfirdn" url="upfirdn.html"/> <mapID target="upsample" url="upsample.html"/> <mapID target="upsamplefill" url="upsamplefill.html"/> diff --git a/help/en_US/scilab_en_US_help/jhelptoc.xml b/help/en_US/scilab_en_US_help/jhelptoc.xml index b84b3cd..f3c806f 100644 --- a/help/en_US/scilab_en_US_help/jhelptoc.xml +++ b/help/en_US/scilab_en_US_help/jhelptoc.xml @@ -2,20 +2,25 @@ <!DOCTYPE toc PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 1.0//EN" "http://java.sun.com/products/javahelp/toc_1_0.dtd"> <toc version="1.0"> <tocitem target="index" text="FOSSEE Signal Processing Toolbox"> -<tocitem target="section_234c65355e471cd38bd717d720add7db" text="FOSSEE Signal Processing Toolbox"> +<tocitem target="section_cc2bc01c47967d47fcf3507a91d572ba" text="FOSSEE Signal Processing Toolbox"> <tocitem target="ac2poly" text="ac2poly"/> <tocitem target="ac2rc" text="ac2rc"/> <tocitem target="arParEst" text="arParEst"/> +<tocitem target="ar_psd" text="ar_psd"/> <tocitem target="arburg" text="arburg"/> <tocitem target="arch_rnd" text="arch_rnd"/> +<tocitem target="arch_test" text="arch_test"/> +<tocitem target="arch_fit" text="arch_fit"/> <tocitem target="arcov" text="arcov"/> <tocitem target="arma_rnd" text="arma_rnd"/> <tocitem target="armcov" text="armcov"/> <tocitem target="aryule" text="aryule"/> +<tocitem target="autoreg_matrix" text="autoreg_matrix"/> <tocitem target="barthannwin" text="barthannwin"/> <tocitem target="bartlett" text="bartlett"/> <tocitem target="besselap" text="besselap"/> <tocitem target="besself" text="besself"/> +<tocitem target="bilinear" text="bilinear"/> <tocitem target="bitrevorder" text="bitrevorder"/> <tocitem target="blackman" text="blackman"/> <tocitem target="blackmanharris" text="blackmanharris"/> @@ -42,9 +47,11 @@ <tocitem target="cl2bp" text="cl2bp"/> <tocitem target="clustersegment" text="clustersegment"/> <tocitem target="cmorwavf" text="cmorwavf"/> +<tocitem target="cohere" text="cohere"/> <tocitem target="convmtx" text="convmtx"/> <tocitem target="corrmtx" text="corrmtx"/> <tocitem target="cplxreal" text="cplxreal"/> +<tocitem target="cpsd" text="cpsd"/> <tocitem target="cummax" text="cummax"/> <tocitem target="cummin" text="cummin"/> <tocitem target="czt" text="czt"/> @@ -52,11 +59,15 @@ <tocitem target="db2pow" text="db2pow"/> <tocitem target="dctmtx" text="dctmtx"/> <tocitem target="decimate" text="decimate"/> +<tocitem target="detrend1" text="detrend1"/> <tocitem target="dftmtx" text="dftmtx"/> +<tocitem target="diffpara" text="diffpara"/> <tocitem target="diric" text="diric"/> <tocitem target="downsample" text="downsample"/> <tocitem target="dst1" text="dst1"/> +<tocitem target="durbinlevinson" text="durbinlevinson"/> <tocitem target="dutycycle" text="dutycycle"/> +<tocitem target="dwt" text="dwt"/> <tocitem target="ellip" text="ellip"/> <tocitem target="ellipap" text="ellipap"/> <tocitem target="ellipord" text="ellipord"/> @@ -65,18 +76,30 @@ <tocitem target="falltime" text="falltime"/> <tocitem target="fft1" text="fft1"/> <tocitem target="fft21" text="fft21"/> +<tocitem target="fftconv" text="fftconv"/> <tocitem target="fftfilt" text="fftfilt"/> <tocitem target="fftw1" text="fftw1"/> <tocitem target="fht" text="fht"/> +<tocitem target="fftshift1" text="fftshift1"/> +<tocitem target="fftn" text="fftn"/> +<tocitem target="fht" text="fht"/> +<tocitem target="filter1" text="filter1"/> +<tocitem target="filter2" text="filter2"/> <tocitem target="filternorm" text="filternorm"/> <tocitem target="filtfilt" text="filtfilt"/> <tocitem target="filtic" text="filtic"/> <tocitem target="filtord" text="filtord"/> +<tocitem target="findpeaks" text="findpeaks"/> +<tocitem target="fir1" text="fir1"/> +<tocitem target="fir2" text="fir2"/> <tocitem target="firpmord" text="firpmord"/> <tocitem target="firtype" text="firtype"/> <tocitem target="flattopwin" text="flattopwin"/> <tocitem target="fracshift" text="fracshift"/> <tocitem target="freqs" text="freqs"/> +<tocitem target="fractdiff" text="fractdiff"/> +<tocitem target="freqs" text="freqs"/> +<tocitem target="freqz" text="freqz"/> <tocitem target="fwhm" text="fwhm"/> <tocitem target="fwhmjlt" text="fwhmjlt"/> <tocitem target="fwht" text="fwht"/> @@ -87,7 +110,9 @@ <tocitem target="gmonopuls" text="gmonopuls"/> <tocitem target="goertzel" text="goertzel"/> <tocitem target="grpdelay" text="grpdelay"/> +<tocitem target="hamming" text="hamming"/> <tocitem target="hann" text="hann"/> +<tocitem target="hanning" text="hanning"/> <tocitem target="helperHarmonicDistortionAmplifier" text="helperHarmonicDistortionAmplifier"/> <tocitem target="hilbert1" text="hilbert1"/> <tocitem target="hurst" text="hurst"/> @@ -99,6 +124,12 @@ <tocitem target="ifft21" text="ifft21"/> <tocitem target="ifht" text="ifht"/> <tocitem target="ifwht" text="ifwht"/> +<tocitem target="ifft" text="ifft"/> +<tocitem target="ifft2" text="ifft2"/> +<tocitem target="ifftshift1" text="ifftshift1"/> +<tocitem target="ifftn" text="ifftn"/> +<tocitem target="ifht" text="ifht"/> +<tocitem target="ifwht" text="ifwht"/> <tocitem target="iirlp2mb" text="iirlp2mb"/> <tocitem target="impinvar" text="impinvar"/> <tocitem target="impz" text="impz"/> @@ -136,6 +167,7 @@ <tocitem target="modulate" text="modulate"/> <tocitem target="morlet" text="morlet"/> <tocitem target="movingrms" text="movingrms"/> +<tocitem target="mscohere" text="mscohere"/> <tocitem target="musicBase" text="musicBase"/> <tocitem target="ncauer" text="ncauer"/> <tocitem target="nnls" text="nnls"/> @@ -168,6 +200,7 @@ <tocitem target="pulsewidth" text="pulsewidth"/> <tocitem target="pulstran" text="pulstran"/> <tocitem target="pyulear" text="pyulear"/> +<tocitem target="pwelch" text="pwelch"/> <tocitem target="qp_kaiser" text="qp_kaiser"/> <tocitem target="rc2ac" text="rc2ac"/> <tocitem target="rc2is" text="rc2is"/> @@ -222,6 +255,7 @@ <tocitem target="tf2zp" text="tf2zp"/> <tocitem target="tf2zpk" text="tf2zpk"/> <tocitem target="tfestimate" text="tfestimate"/> +<tocitem target="tfe" text="tfe"/> <tocitem target="transpose" text="transpose"/> <tocitem target="trial_iirlp2mb" text="trial_iirlp2mb"/> <tocitem target="triang" text="triang"/> @@ -232,6 +266,7 @@ <tocitem target="uencode" text="uencode"/> <tocitem target="ultrwin" text="ultrwin"/> <tocitem target="unshiftdata" text="unshiftdata"/> +<tocitem target="unwrap2" text="unwrap2"/> <tocitem target="upfirdn" text="upfirdn"/> <tocitem target="upsample" text="upsample"/> <tocitem target="upsamplefill" text="upsamplefill"/> diff --git a/help/en_US/sigmoid_train.xml b/help/en_US/sigmoid_train.xml index 07a86b7..6f57b3f 100644 --- a/help/en_US/sigmoid_train.xml +++ b/help/en_US/sigmoid_train.xml @@ -17,7 +17,40 @@ <refnamediv> <refname>sigmoid_train</refname> - <refpurpose>funcprot(0);</refpurpose> + <refpurpose>Evaluate a train of sigmoid functions at T.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + y = sigmoid_train(t, ranges, rc) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>t:</term> + <listitem><para> integer</para></listitem></varlistentry> + <varlistentry><term>ranges:</term> + <listitem><para> matrix</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +The number and duration of each sigmoid is determined from RANGES. Each row of RANGES represents a real interval, e.g. if sigmoid 'i' starts at 't=0.1' and ends at 't=0.5', then 'RANGES(i,:) = [0.1 0.5]'. The input RC is an array that defines the rising and falling time constants of each sigmoid. Its size must equal the size of RANGES. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +sigmoid_train(0.1,[1:3],4) +ans = +0.27375 + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/sinetone.xml b/help/en_US/sinetone.xml index c47964a..ce0e9f7 100644 --- a/help/en_US/sinetone.xml +++ b/help/en_US/sinetone.xml @@ -17,7 +17,38 @@ <refnamediv> <refname>sinetone</refname> - <refpurpose></refpurpose> + <refpurpose>Return a sinetone of the input</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + y= sinetone(FREQ) + y= sinetone(FREQ, RATE) + y= sinetone(FREQ, RATE, SEC) + y= sinetone(FREQ, RATE, SEC, AMPL) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>FREQ:</term> + <listitem><para> frequency of sinetone</para></listitem></varlistentry> + <varlistentry><term>RATE:</term> + <listitem><para> Sampling rate</para></listitem></varlistentry> + <varlistentry><term>SEC:</term> + <listitem><para> Length in seconds</para></listitem></varlistentry> + <varlistentry><term>AMPL:</term> + <listitem><para> Amplitude</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return a sinetone of frequency FREQ with a length of SEC seconds atsampling rate RATE and with amplitude AMPL.The arguments FREQ and AMPL may be vectors of common size.The defaults are RATE = 8000, SEC = 1, and AMPL = 64. +</para> +</refsection> </refentry> diff --git a/help/en_US/sinewave.xml b/help/en_US/sinewave.xml index 2c7b0fd..bcc785d 100644 --- a/help/en_US/sinewave.xml +++ b/help/en_US/sinewave.xml @@ -17,7 +17,37 @@ <refnamediv> <refname>sinewave</refname> - <refpurpose></refpurpose> + <refpurpose>Return an M-element vector with I-th element given by 'sin(2* pi *(I+D-1)/N).'</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + y= sinewave(M) + y= sinewave(M,N) + y= sinewave(M,N,D) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>M:</term> + <listitem><para> Input vector</para></listitem></varlistentry> + <varlistentry><term>N:</term> + <listitem><para> The default value for N is M</para></listitem></varlistentry> + <varlistentry><term>D:</term> + <listitem><para> The default value for D is 0</para></listitem></varlistentry> + <varlistentry><term>AMPL:</term> + <listitem><para> Amplitude</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return an M-element vector with I-th element given by 'sin(2* pi *(I+D-1)/N).' +</para> +</refsection> </refentry> diff --git a/help/en_US/spectral_adf.xml b/help/en_US/spectral_adf.xml index 56e229a..164d3e0 100644 --- a/help/en_US/spectral_adf.xml +++ b/help/en_US/spectral_adf.xml @@ -17,7 +17,38 @@ <refnamediv> <refname>spectral_adf</refname> - <refpurpose></refpurpose> + <refpurpose>Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + spectral_adf(C) + spectral_adf(C, WIN) + spectral_adf(C, WIN, B) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>C:</term> + <listitem><para> Autocovariances</para></listitem></varlistentry> + <varlistentry><term>WIN:</term> + <listitem><para> Window names</para></listitem></varlistentry> + <varlistentry><term>B:</term> + <listitem><para> Bandwidth</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return the spectral density estimator given a vector ofautocovariances C, window name WIN, and bandwidth, B. +The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_lw'. +If WIN is omitted, the triangle window is used. +If B is omitted, '1 / sqrt (length (C))' is used. +</para> +</refsection> </refentry> diff --git a/help/en_US/spectral_xdf.xml b/help/en_US/spectral_xdf.xml index dfb5da5..04cc793 100644 --- a/help/en_US/spectral_xdf.xml +++ b/help/en_US/spectral_xdf.xml @@ -17,7 +17,38 @@ <refnamediv> <refname>spectral_xdf</refname> - <refpurpose></refpurpose> + <refpurpose>Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + spectral_xdf(X) + spectral_xdf(X, WIN) + spectral_xdf(X, WIN, B) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Data Vector</para></listitem></varlistentry> + <varlistentry><term>WIN:</term> + <listitem><para> Window names</para></listitem></varlistentry> + <varlistentry><term>B:</term> + <listitem><para> Bandwidth</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B. +The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_lw'. +If WIN is omitted, the triangle window is used. +If B is omitted, '1 / sqrt (length (X))' is used. +</para> +</refsection> </refentry> diff --git a/help/en_US/spencer.xml b/help/en_US/spencer.xml index 1d1a1ff..66b1570 100644 --- a/help/en_US/spencer.xml +++ b/help/en_US/spencer.xml @@ -17,7 +17,29 @@ <refnamediv> <refname>spencer</refname> - <refpurpose></refpurpose> + <refpurpose>Return Spencer's 15 point moving average of each column of X.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + spencer(X) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Real scalar or vector</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Return Spencer's 15 point moving average of each column of X. +</para> +</refsection> </refentry> diff --git a/help/en_US/stft.xml b/help/en_US/stft.xml index 5811a67..2449be3 100644 --- a/help/en_US/stft.xml +++ b/help/en_US/stft.xml @@ -17,7 +17,68 @@ <refnamediv> <refname>stft</refname> - <refpurpose></refpurpose> + <refpurpose>Compute the short-time Fourier transform of the vector X</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + Y = stft (X) + Y = stft (X, WIN_SIZE) + Y = stft (X, WIN_SIZE, INC) + Y = stft (X, WIN_SIZE, INC, NUM_COEF) + Y = stft (X, WIN_SIZE, INC, NUM_COEF, WIN_TYPE) + [Y,C] = stft (X) + [Y,C] = stft (X, WIN_SIZE) + [Y,C] = stft (X, WIN_SIZE, INC) + [Y,C] = stft (X, WIN_SIZE, INC, NUM_COEF) + [Y,C] = stft (X, WIN_SIZE, INC, NUM_COEF, WIN_TYPE) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Real scalar or vector</para></listitem></varlistentry> + <varlistentry><term>WIN_SIZE:</term> + <listitem><para> Size of the window used</para></listitem></varlistentry> + <varlistentry><term>INC:</term> + <listitem><para> Increment</para></listitem></varlistentry> + <varlistentry><term>WIN_TYPE:</term> + <listitem><para> Type of window</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points. + </para> + <para> +Before computing the Fourier transform, one of the following windows is applied: + </para> + <para> +"hanning" -> win_type = 1 + </para> + <para> +"hamming" -> win_type = 2 + </para> + <para> +"rectangle" -> win_type = 3 + </para> + <para> +The window names can be passed as strings or by the WIN_TYPE number. + </para> + <para> +The following defaults are used for unspecified arguments:WIN_SIZE= 80, INC = 24, NUM_COEF = 64, and WIN_TYPE = 1. + </para> + <para> +Y = stft (X, ...)' returns the absolute values of the Fourier coefficients according to the NUM_COEF positive frequencies. + </para> + <para> +'[Y, C] = stft (x, ...)' returns the entire STFT-matrix Y and a 3-element vector C containing the window size, increment, and window type, which is needed by the 'synthesis' function. +</para> +</refsection> </refentry> diff --git a/help/en_US/synthesis.xml b/help/en_US/synthesis.xml index 03de9ff..b1c1270 100644 --- a/help/en_US/synthesis.xml +++ b/help/en_US/synthesis.xml @@ -17,7 +17,33 @@ <refnamediv> <refname>synthesis</refname> - <refpurpose></refpurpose> + <refpurpose>Compute a signal from its short-time Fourier transform</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + X= synthesis(Y,C) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>Y:</term> + <listitem><para> Shirt-time fourier transform</para></listitem></varlistentry> + <varlistentry><term>C:</term> + <listitem><para> 3-element vector C specifying window size, increment, window type.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type. +The values Y and C can be derived by +[Y, C] = stft (X , ...) +</para> +</refsection> </refentry> diff --git a/help/en_US/tfe.xml b/help/en_US/tfe.xml new file mode 100644 index 0000000..0e5e35b --- /dev/null +++ b/help/en_US/tfe.xml @@ -0,0 +1,61 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from tfe.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="tfe" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>tfe</refname> + <refpurpose>Estimate transfer function of system with input "x" and output "y". Use the Welch (1967) periodogram/FFT method.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [Pxx,freq] = tfe(x,y,Nfft,Fs,window,overlap,range,plot_type,detrend) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> [non-empty vector] system-input time-series data</para></listitem></varlistentry> + <varlistentry><term>y:</term> + <listitem><para> [non-empty vector] system-output time-series data</para></listitem></varlistentry> + <varlistentry><term>win:</term> + <listitem><para>[real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument.</para></listitem></varlistentry> + <varlistentry><term>overlap:</term> + <listitem><para>[real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 .</para></listitem></varlistentry> + <varlistentry><term>Nfft:</term> + <listitem><para>[integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently.</para></listitem></varlistentry> + <varlistentry><term>Fs:</term> + <listitem><para>[real scalar] sampling frequency (Hertz); default=1.0</para></listitem></varlistentry> + <varlistentry><term>range:</term> + <listitem><para>'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. 'whole', 'twosided' : frequency range of the spectrum is-Fs/2 to Fs/2, with negative frequenciesstored in "wrap around" order after the positivefrequencies; e.g. frequencies for a 10-point 'twosided'spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'.</para></listitem></varlistentry> + <varlistentry><term>plot_type:</term> + <listitem><para> 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db': specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value.</para></listitem></varlistentry> + <varlistentry><term>detrends:</term> + <listitem><para>'no-strip', 'none' -- do NOT remove mean value from the data'short', 'mean' -- remove the mean value of each segment from each segment of the data. 'linear',-- remove linear trend from each segment of the data.'long-mean'-- remove the mean value from the data before splitting it into segments. This is the default.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Estimate transfer function of system with input "x" and output "y". Use the Welch (1967) periodogram/FFT method. +</para> +</refsection> +</refentry> diff --git a/help/en_US/unwrap2.xml b/help/en_US/unwrap2.xml new file mode 100644 index 0000000..31523de --- /dev/null +++ b/help/en_US/unwrap2.xml @@ -0,0 +1,60 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from unwrap2.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="unwrap2" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>unwrap2</refname> + <refpurpose>Unwrap radian phases by adding or subtracting multiples of 2*pi.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + B = unwrap(X) + B = unwrap(X, TOL) + B = unwrap(X, TOL, DIM) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function unwraps radian phases by adding or subtracting multiples of 2*pi as appropriate to remove jumps greater than TOL. + </para> + <para> +TOL defaults to pi. + </para> + <para> +Unwrap will work along the dimension DIM. If DIM is unspecified it defaults to the first non-singleton dimension. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +unwrap2([1,2,3]) +ans = +1. 2. 3. + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/xcov1.xml b/help/en_US/xcov1.xml index 7a866bb..3872563 100644 --- a/help/en_US/xcov1.xml +++ b/help/en_US/xcov1.xml @@ -17,7 +17,48 @@ <refnamediv> <refname>xcov1</refname> - <refpurpose></refpurpose> + <refpurpose>Compute covariance at various lags [=correlation(x-mean(x),y-mean(y))].</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [R, lag] = xcov (X) + ... = xcov (X, Y) + ... = xcov (..., maxlag) + ... = xcov (..., scale) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> Input vector</para></listitem></varlistentry> + <varlistentry><term>Y:</term> + <listitem><para> if specified, compute cross-covariance between X and Y, otherwise compute autocovariance of X.</para></listitem></varlistentry> + <varlistentry><term>maxlag:</term> + <listitem><para> is specified, use lag range [-maxlag:maxlag], otherwise use range [-n+1:n-1].</para></listitem></varlistentry> + <varlistentry><term>scale:</term> + <listitem><para> </para></listitem></varlistentry> + <varlistentry><term>'biased':</term> + <listitem><para> for covariance=raw/N,</para></listitem></varlistentry> + <varlistentry><term>'unbiased':</term> + <listitem><para> for covariance=raw/(N-|lag|),</para></listitem></varlistentry> + <varlistentry><term>'coeff':</term> + <listitem><para> for covariance=raw/(covariance at lag 0),</para></listitem></varlistentry> + <varlistentry><term>'none':</term> + <listitem><para> for covariance=raw</para></listitem></varlistentry> + <varlistentry><term>'none':</term> + <listitem><para> is the default.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Compute covariance at various lags [=correlation(x-mean(x),y-mean(y))]. Returns the covariance for each lag in the range, plus an optional vector of lags. +</para> +</refsection> </refentry> diff --git a/help/en_US/yulewalker.xml b/help/en_US/yulewalker.xml index c336879..5fdac3c 100644 --- a/help/en_US/yulewalker.xml +++ b/help/en_US/yulewalker.xml @@ -17,7 +17,31 @@ <refnamediv> <refname>yulewalker</refname> - <refpurpose></refpurpose> + <refpurpose>Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'.</refpurpose> </refnamediv> + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + A = yulewalker(C) + [A,V]= yulewalker(C) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>C:</term> + <listitem><para> Autocovariances</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'. +Returns the AR coefficients, A, and the variance of white noise, V. +</para> +</refsection> </refentry> diff --git a/jar/scilab_en_US_help.jar b/jar/scilab_en_US_help.jar Binary files differindex 46faf30..c60a3ae 100644 --- a/jar/scilab_en_US_help.jar +++ b/jar/scilab_en_US_help.jar diff --git a/macros/ar_psd.sci b/macros/ar_psd.sci new file mode 100644 index 0000000..540dfec --- /dev/null +++ b/macros/ar_psd.sci @@ -0,0 +1,40 @@ +function [P, F]= ar_psd(A, varargin) +//Calculate the power spectrum of the autoregressive model +//Calling Sequence +// [PSD,F_OUT]=ar_psd (A, V) +// [PSD,F_OUT]=ar_psd (A, V, FREQ) +// [PSD,F_OUT]=ar_psd (A, V, FREQ, FS) +// [PSD,F_OUT]=ar_psd (..., RANGE) +// [PSD,F_OUT]=ar_psd (..., METHOD) +// [PSD,F_OUT]=ar_psd (..., PLOTTYPE) +//Parameters +//A:List of M=(order+1) autoregressive model coefficients. The first element of "ar_coeffs" is the zero-lag coefficient, which always has a value of 1. +//V:Square of the moving-average coefficient of the AR model. +//FREQ:Frequencies at which power spectral density is calculated, or a scalar indicating the number of uniformly distributed frequency values at which spectral density is calculated. (default = 256) +//FS:Sampling frequency (Hertz) (default=1) +//Range: 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum.'whole', 'twosided' : frequency range of the spectrum is-sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'. +// Method:'fft': use FFT to calculate power spectrum. 'poly': calculate power spectrum as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2. +// Plot type:'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db':specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. +//PSD: estimate of power-spectral density +//F_OUT: frequency values +//Description +//If the FREQ argument is a vector (of frequencies) the spectrum is calculated using the polynomial method and the METHOD argument is ignored. For scalar FREQ, an integer power of 2, or METHOD = "FFT", causes the spectrum to be calculated by FFT. Otherwise, the spectrum is calculated as a polynomial. It may be computationally more efficient to use the FFT method if length of the model is not much smaller than the number of frequency values. The spectrum is scaled so that spectral energy (area under spectrum) is the same as the time-domain energy (mean square of the signal). +//Examples +//[a,b]= ar_psd([1,2,3],2) + + funcprot(0); + rhs= argn(2); + if(rhs <2 | rhs>5) + error("Wrong number of input arguments"); + end + select(rhs) + case 2 then + [P,F]= callOctave("ar_psd", A, varargin(1)); + case 3 then + [P,F]= callOctave("ar_psd", A, varargin(1), varargin(2)); + case 4 then + [P,F]= callOctave("ar_psd", A, varargin(1), varargin(2), varargin(3)); + case 5 then + [P,F]= callOctave("ar_psd", A, varargin(1), varargin(2), varargin(3), varargin(4)); + end +endfunction diff --git a/macros/arch_fit.sci b/macros/arch_fit.sci new file mode 100644 index 0000000..3e431a6 --- /dev/null +++ b/macros/arch_fit.sci @@ -0,0 +1,35 @@ +function [A, B] = arch_fit(Y, varargin) +//This functions fits an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper. +//Calling Sequence +//[A, B] = arch_fit (Y, X, P, ITER, GAMMA, A0, B0) +//Parameters +//Description +//Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper. +// +//The model is +// +// y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t), +// h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2 +// +//in which e(t) is N(0, h(t)), given a time-series vector Y up to time t-1 and a matrix of (ordinary) regressors X up to t. The order of the regression of the residual variance is specified by P. +// +//If invoked as 'arch_fit (Y, K, P)' with a positive integer K, fit an ARCH(K, P) process, i.e., do the above with the t-th row of X given by +// +// [1, y(t-1), ..., y(t-k)] +// +//Optionally, one can specify the number of iterations ITER, the updating factor GAMMA, and initial values a0 and b0 for the scoring algorithm. +funcprot(0); +rhs = argn(2); +lhs=argn(1); +if(rhs<7 | rhs>7) +error("Wrong number of input arguments."); +end +if (lhs<2 | lhs>2) + error("Wrong number of output arguments."); +end + + select(rhs) + case 7 then + [A, B] = callOctave("arch_fit",Y, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6)); + end +endfunction diff --git a/macros/arch_test.sci b/macros/arch_test.sci new file mode 100644 index 0000000..3c53fc5 --- /dev/null +++ b/macros/arch_test.sci @@ -0,0 +1,46 @@ +function [PVAL, LM]= arch_test(Y,X,P) +// perform a Lagrange Multiplier (LM) test of thenull hypothesis of no conditional heteroscedascity against the alternative of CH(P) +//Calling Sequence +//arch_test(Y,X,P) +//PVAL = arch_test(Y,X,P) +//[PVAL, LM]= arch_test(Y,X,P) +//Parameters +//P: Degrees of freedom +//PVAL:PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test +//Description +//perform a Lagrange Multiplier (LM) test of thenull hypothesis of no conditional heteroscedascity against the alternative of CH(P). +// +//I.e., the model is +// +// y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t), +// +//given Y up to t-1 and X up to t, e(t) is N(0, h(t)) with +// +// h(t) = v + a(1) * e(t-1)^2 + ... + a(p) *e(t-p)^2, and the null is a(1) == ... == a(p) == 0. +// +//If the second argument is a scalar integer, k,perform the sametest in a linear autoregression model of orderk, i.e., with +// +// [1, y(t-1), ..., y(t-K)] as the t-th row of X. +// +// Under the null, LM approximatel has a chisquare distribution with P degrees of freedom and PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test. +// +// If no output argument is given, the p-value is displayed. + funcprot(0) + rhs= argn(2); + lhs= argn(1); + if(rhs<3 | rhs>3) + error("Wrong number of input arguments"); + end + if(lhs<1 | lhs>2) + error("Wrong number of output arguments"); + end + select(rhs) + case 3 then + select(lhs) + case 1 then + PVAL= callOctave("arch_test", Y, X, P); + case 2 then + [PVAL,LM]= callOctave("arch_test", Y, X, P); + end + end +endfunction
\ No newline at end of file diff --git a/macros/autoreg_matrix.sci b/macros/autoreg_matrix.sci new file mode 100644 index 0000000..8778a84 --- /dev/null +++ b/macros/autoreg_matrix.sci @@ -0,0 +1,30 @@ +function y = autoreg_matrix(Y, varargin) +// Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns. +//Calling Sequence +//autoreg_matrix(Y, K) +//Parameters +//Y: Vector +//K: Scalar or Vector +//Description +// Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns. +// +//In other words, for T > K, '[1, Y(T-1), ..., Y(T-K)]' is the t-th row of the result. +// +//The resulting matrix may be used as a regressor matrix in autoregressions. +//Examples +//autoreg_matrix([1,2,3],2) +//ans = +// 1. 0. 0. +// 1. 1. 0. +// 1. 2. 1. +funcprot(0); +rhs = argn(2) +if(rhs<2 | rhs>2) +error("Wrong number of input arguments."); +end + + select(rhs) + case 2 then + y = callOctave("autoreg_matrix", Y, varargin(1)); + end +endfunction diff --git a/macros/bilinear.sci b/macros/bilinear.sci new file mode 100644 index 0000000..387b8d0 --- /dev/null +++ b/macros/bilinear.sci @@ -0,0 +1,40 @@ +function [Zb, Za, Zg]= bilinear(Sb,varargin) +// Transform a s-plane filter specification into a z-plane specification +//Calling Sequence +// [ZB, ZA] = bilinear (SB, SA, T) +// [ZB, ZA] = bilinear (SZ, SP, SG, T) +// [ZZ, ZP, ZG] = bilinear (...) +//Description +//Transform a s-plane filter specification into a z-plane specification. Filters can be specified in either zero-pole-gain or transfer function form. The input form does not have to match the output form. 1/T is the sampling frequency represented in the z plane. +// +//Note: this differs from the bilinear function in the signal processing toolbox, which uses 1/T rather than T. +// +//Theory: Given a piecewise flat filter design, you can transform it from the s-plane to the z-plane while maintaining the band edges by means of the bilinear transform. This maps the left hand side of the s-plane into the interior of the unit circle. The mapping is highly non-linear, so you must design your filter with band edges in the s-plane positioned at 2/T tan(w*T/2) so that they will be positioned at w after the bilinear transform is complete. +//Examples +//[ZB,ZA]=bilinear([1],[2,3],3) + funcprot(0); + lhs= argn(1); + rhs= argn(2); + if(rhs < 3 | rhs > 4) + error("Wrong number of input arguments"); + end + if(lhs < 2 | lhs > 3) + error("Wrong number of output arguments"); + end + select(rhs) + case 3 then + select(lhs) + case 2 then + [Zb, Za]= callOctave("bilinear", Sb, varargin(1), varargin(2)); + case 3 then + [Zb, Za, Zg]= callOctave("bilinear", Sb, varargin(1), varargin(2)); + end + case 4 then + select(lhs) + case 2 then + [Zb, Za]= callOctave("bilinear", Sb, varargin(1), varargin(2), varargin(3)); + case 3 then + [Zb, Za, Zg]= callOctave("bilinear", Sb, varargin(1), varargin(2), varargin(3)); + end + end +endfunction
\ No newline at end of file diff --git a/macros/cceps.sci b/macros/cceps.sci index 99e4a7d..3756a5d 100644 --- a/macros/cceps.sci +++ b/macros/cceps.sci @@ -1,7 +1,21 @@ function y = cceps (x,correct) +//Return the complex cepstrum of the vector x +//Calling Sequence +//cceps (x) +//cceps(x, correct) +//Parameters +//x: vector. +//correct: if 1, a correction method is applied. +//Description +//This function return the complex cepstrum of the vector x. If the optional argument correct has the value 1, a correction method is applied. The default is not to do this. +//Examples +//cceps([1,2,3],1) +//ans = +// 1.92565 +// 0.96346 +// -1.09735 funcprot(0); -// rhs = argn(2) if(rhs<1 | rhs>2) error("Wrong number of input arguments.") diff --git a/macros/cohere.sci b/macros/cohere.sci new file mode 100644 index 0000000..ba013ab --- /dev/null +++ b/macros/cohere.sci @@ -0,0 +1,28 @@ +function [Pxx,freqs] = cohere(x,y,Nfft,Fs,win,overlap,ran,plot_type,detrends) +//Estimate (mean square) coherence of signals "x" and "y" +//Calling Sequence +// [Pxx,freqs] = cohere(x,y,Nfft,Fs,win,overlap,ran,plot_type,detrends) +//Parameters +//x: [non-empty vector] system-input time-series data +//y: [non-empty vector] system-output time-series data +//win:[real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument. +//overlap:[real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 . +//Nfft:[integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently. +//Fs:[real scalar] sampling frequency (Hertz); default=1.0 +//range:'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. 'whole', 'twosided' : frequency range of the spectrum is-Fs/2 to Fs/2, with negative frequenciesstored in "wrap around" order after the positivefrequencies; e.g. frequencies for a 10-point 'twosided'spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'. +//plot_type: 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db': specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. +//detrends:'no-strip', 'none' -- do NOT remove mean value from the data'short', 'mean' -- remove the mean value of each segment from each segment of the data. 'linear',-- remove linear trend from each segment of the data.'long-mean'-- remove the mean value from the data before splitting it into segments. This is the default. +//Description +//Estimate (mean square) coherence of signals "x" and "y". +// +//Use the Welch (1967) periodogram/FFT method. + rhs= argn(2); + lhs= argn(1); + if(rhs < 10 | rhs > 10) + error("Wrong number of input arguments"); + end + select(rhs) + case 10 then + [Pxx,freqs] = callOctave("cohere",x,y,Nfft,Fs,win,overlap,ran,plot_type,detrends); + end +endfunction
\ No newline at end of file diff --git a/macros/cpsd.sci b/macros/cpsd.sci new file mode 100644 index 0000000..5e56d7a --- /dev/null +++ b/macros/cpsd.sci @@ -0,0 +1,50 @@ +function [PXX, FREQ] = cpsd(X, Y, varargin) +//This function estimates cross power spectrum of data x and y by the Welch (1967) periodogram/FFT method. +//Calling Sequence +//[PXX, FREQ] = cpsd(X, Y) +//[...] = cpsd(X, Y, WINDOW) +//[...] = cpsd(X, Y, WINDOW, OVERLAP) +//[...] = cpsd(X, Y, WINDOW, OVERLAP, NFFT) +//[...] = cpsd(X, Y, WINDOW, OVERLAP, NFFT, FS) +//[...] = cpsd(X, Y, WINDOW, OVERLAP, NFFT, FS, RANGE) +//cpsd(...) +//Parameters +//X, Y: Matrix or integer +//Description +//Estimate cross power spectrum of data X and Y by the Welch (1967) periodogram/FFT method. +//Examples +// [a, b] = cpsd([1,2,3],[4,5,6]) +//ans = +// b = +// 0. +// 0.25 +// 0.5 +// a = +// 2.7804939 +// 4.4785583 + 1.0743784i +// 0.7729851 +funcprot(0); +rhs=argn(2); +lhs=argn(1); +if(rhs<2 | rhs>7) then + error("Wrong number of input arguments."); +end +if (lhs<2 | lhs>2) + error("Wrong number of output arguments."); +end +select(rhs) +case 2 then + [PXX, FREQ] = callOctave("cpsd",X, Y); +case 3 then + [PXX, FREQ] = callOctave("cpsd",X, Y, varargin(1)); +case 4 then + [PXX, FREQ] = callOctave("cpsd",X, Y, varargin(1), varargin(2)); +case 5 then + [PXX, FREQ] = callOctave("cpsd",X, Y, varargin(1), varargin(2), varargin(3)); +case 6 then + [PXX, FREQ] = callOctave("cpsd",X, Y, varargin(1), varargin(2), varargin(3), varargin(4)); +case 7 then + [PXX, FREQ] = callOctave("cpsd",X, Y, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5)); +end + +endfunction diff --git a/macros/czt.sci b/macros/czt.sci index b027489..84a0253 100644 --- a/macros/czt.sci +++ b/macros/czt.sci @@ -1,4 +1,23 @@ function y = czt(x, varargin) +//Chirp Z Transform +//Calling Sequence +//czt (x) +//czt (x, m) +//czt (x, m, w) +//czt (x, m, w, a) +//Parameters +//x: Input scalar or vector +//m: Total Number of steps +//w: ratio between points in each step +//a: point in the complex plane +//Description +//This is an Octave function. +//Chirp z-transform. Compute the frequency response starting at a and stepping by w for m steps. a is a point in the complex plane, and w is the ratio between points in each step (i.e., radius increases exponentially, and angle increases linearly). +//Examples +// m = 32; ## number of points desired +// w = exp(-j*2*pi*(f2-f1)/((m-1)*Fs)); ## freq. step of f2-f1/m +// a = exp(j*2*pi*f1/Fs); ## starting at frequency f1 +// y = czt(x, m, w, a); funcprot(0); lhs= argn(1); diff --git a/macros/detrend1.sci b/macros/detrend1.sci new file mode 100644 index 0000000..52ac26f --- /dev/null +++ b/macros/detrend1.sci @@ -0,0 +1,23 @@ +function y = detrend1(x, varargin) +//This function removes the best fit of a polynomial of order P from the data X +//Calling Sequence +//detrend1(X,P) +//Parameters +//X: Input vecor or matrix. +//P: The order of polnomial +//Description +//If X is a vector, 'detrend1(X, P)' removes the best fit of apolynomial of order P from the data X.If X is a matrix, 'detrend1(X, P)' does the same for each column in X. +// +//The second argument P is optional. If it is not specified, a value of 1 is assumed. This corresponds to removing a linear trend. +//The order of the polynomial can also be given as a string, in which case P must be either "constant" (corresponds to 'P=0') or "linear"(corresponds to 'P=1') + rhs= argn(2); + if(rhs<1 | rhs> 2) + error("Wrong number of input arguments"); + end + select(rhs) + case 1 then + y= callOctave("detrend", x); + case 2 then + y= callOctave("detrend", x , varargin(1)); + end +endfunction diff --git a/macros/diffpara.sci b/macros/diffpara.sci new file mode 100644 index 0000000..c36ae7c --- /dev/null +++ b/macros/diffpara.sci @@ -0,0 +1,50 @@ +function [D,DD] = diffpara(X,varargin) +//Return the estimator D for the differencing parameter of an integrated time series +//Calling Sequence +// [D, DD] = diffpara (X) +// [D, DD] = diffpara (X, A) +// [D, DD] = diffpara (X, A, B) +//Parameters +//X: Input scalar or vector. +//DD:The estimators for all frequencies in the intervals described above. +//D:The mean of DD +//Description +//Return the estimator D for the differencing parameter of an integrated time series. +// +//The frequencies from [2*pi*a/t, 2*pi*b/T] are used for the estimation. If B is omitted, the interval [2*pi/T, 2*pi*a/T] is used. If both B and A are omitted then a = 0.5 * sqrt (T) and b = 1.5 * sqrt (T) is used, where T is the sample size. If X is a matrix, the differencing parameter of each column is estimated. +// +//The estimators for all frequencies in the intervals described above is returned in DD. +// +//The value of D is simply the mean of DD. + lhs= argn(1); + rhs= argn(2); + if(rhs <1 | rhs> 3) + error("Wrong number of input parameters"); + end + if(lhs<1 | lhs>2) + error("Wrong number of output parameters"); + end + select(rhs) + case 1 then + select(lhs) + case 1 then + D= diffpara(X); + case 2 then + [D, DD]= diffpara(X); + end + case 2 then + select(lhs) + case 1 then + D= diffpara(X, varargin(1)); + case 2 then + [D, DD]= diffpara(X, varargin(1)); + end + case 3 then + select(lhs) + case 1 then + D= diffpara(X, varargin(1), varargin(2)); + case 2 then + [D, DD]= diffpara(X, varargin(1), varargin(2)); + end + end +endfunction diff --git a/macros/dst1.sci b/macros/dst1.sci index 3b3b4b6..7f2165f 100644 --- a/macros/dst1.sci +++ b/macros/dst1.sci @@ -1,5 +1,14 @@ function y = dst1(x, varargin) - +//Computes the type I discrete sine transform of x +//Calling Sequence +//y= dst1(x) +//y= dst1(x,n) +//Parameters +//x: real or complex valued vector +//n= Length to which x is trimmed before transform +//Description +//This is an Octave function. +//Computes the type I discrete sine transform of x. If n is given, then x is padded or trimmed to length n before computing the transform. If x is a matrix, compute the transform along the columns of the the matrix. funcprot(0); lhs= argn(1); diff --git a/macros/durbinlevinson.sci b/macros/durbinlevinson.sci new file mode 100644 index 0000000..74dbb46 --- /dev/null +++ b/macros/durbinlevinson.sci @@ -0,0 +1,27 @@ +function y= durbinlevinson(C, varargin) +// Perform one step of the Durbin-Levinson algorithm.. +//Calling Sequence +// durbinlevinson (C); +// durbinlevinson (C, OLDPHI); +// durbinlevinson (C, OLDPHI, OLDV); +//Parameters +//C: The vector C specifies the autocovariances '[gamma_0, ..., gamma_t]' from lag 0 to T. +//OLDPHI: It specifies the coefficients based on C(T-1). +//OLDV: It specifies the corresponding error. +//Description +//This is an Octave function. +//Perform one step of the Durbin-Levinson. +//If OLDPHI and OLDV are omitted, all steps from 1 to T of the algorithm are performed. + rhs=argn(2); + if(rhs<1 | rhs>3) + error("Wrong number of input arguments"); + end + select(rhs) + case 1 then + y=callOctave("durbinlevinson",C); + case 2 then + y=callOctave("durbinlevinson",C, varargin(1)); + case 3 then + y=callOctave("durbinlevinson",C, varargin(1), varargin(2)); + end +endfunction
\ No newline at end of file diff --git a/macros/dwt.sci b/macros/dwt.sci new file mode 100644 index 0000000..b564c7c --- /dev/null +++ b/macros/dwt.sci @@ -0,0 +1,34 @@ +function [U, V] = dwt(X, varargin) +//Discrete wavelet transform (1D) +//Calling Sequence +//[U, V] = dwt(X, WNAME) +//[U, V] = dwt(X, HP, GP) +//[U, V] = dwt(X, HP, GP,...) +//Parameters +//Inputs: +//X: Signal Vector. +//WNAME: Wavelet name. +//HP: Coefficients of low-pass decomposition FIR filter. +//GP: Coefficients of high-pass decomposition FIR filter. +//Outputs: +//U: Signal vector of average, approximation. +//V: Signal vector of difference, detail. +//Description +//This function calculates the discrete wavelet transform (1D). +//Examples +// +funcprot(0); +rhs = argn(2) +if(rhs<2 | rhs>4) +error("Wrong number of input arguments."); +end + + select(rhs) + case 2 then + [U, V] = callOctave("dwt", X, varargin(1)); + case 3 then + [U, V] = callOctave("dwt", X, varargin(1), varargin(2)); + case 4 then + [U, V] = callOctave("dwt", X, varargin(1), varargin(2), varargin(3)); + end +endfunction diff --git a/macros/fftconv.sci b/macros/fftconv.sci new file mode 100644 index 0000000..d39441d --- /dev/null +++ b/macros/fftconv.sci @@ -0,0 +1,26 @@ +function y = fftconv(X, Y, varargin) +//Convolve two vectors using the FFT for computation. +//Calling Sequence +//Y = fftconv(X, Y) +//Y = fftconv(X, Y, N) +//Parameters +//X, Y: Vectors +//Description +//Convolve two vectors using the FFT for computation. 'c' = fftconv (X, Y)' returns a vector of length equal to 'length(X) + length (Y) - 1'. If X and Y are the coefficient vectors of two polynomials, the returned value is the coefficient vector of the product polynomial. +//Examples +//fftconv([1,2,3], [3,4,5]) +//ans = +// 3. 10. 22. 22. 15. +funcprot(0); +rhs = argn(2) +if(rhs<2 | rhs>3) +error("Wrong number of input arguments."); +end + + select(rhs) + case 2 then + y = callOctave("fftconv", X, Y); + case 3 then + y = callOctave("fftconv",X, Y, varargin(1)); + end +endfunction diff --git a/macros/fftn.sci b/macros/fftn.sci new file mode 100644 index 0000000..b8b4170 --- /dev/null +++ b/macros/fftn.sci @@ -0,0 +1,26 @@ +function y = fftn(A, SIZE) +//This function computes the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm. +//Calling Sequence +//Y = fftn(A) +//Y = fftn(A, size) +//Parameters +//A: Matrix +//Description +//This function computes the N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm. The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the FFT. Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros. +//Examples +//fftn([2,3,4]) +//ans = +// 9. - 1.5 + 0.8660254i - 1.5 - 0.8660254i +funcprot(0); +rhs = argn(2) +if(rhs<1 | rhs>2) +error("Wrong number of input arguments."); +end + + select(rhs) + case 1 then + y = callOctave("fftn",A); + case 2 then + y = callOctave("fftn",A, SIZE); + end +endfunction diff --git a/macros/fftshift1.sci b/macros/fftshift1.sci new file mode 100644 index 0000000..9026025 --- /dev/null +++ b/macros/fftshift1.sci @@ -0,0 +1,33 @@ +function y= fftshift1(X,DIM) +//Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix. +//Calling Sequence +// fftshift1 (X) +// fftshift1 (X, DIM) +//Parameters +//X:It is a vector of N elements corresponding to time samples +//DIM: The optional DIM argument can be used to limit the dimension along which the permutation occurs +//Description +//This is an Octave function. +//Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix. +// +//If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift1 (fft1 (X))' corresponds to frequencies +// +//f = [ -(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df ] +// +//where df = 1 / dt. +// +//If X is a matrix, the same holds for rows and columns. If X is an array, then the same holds along each dimension. +// +//The optional DIM argument can be used to limit the dimension along + which the permutation occurs. + rhs= argn(2); + if(rhs <1 | rhs >2) + error('Wrong number of Input arguments'); + end + select(rhs) + case 1 then + y=callOctave("fftshift",X); + case 2 then + y=callOctave("fftshift",X,DIM); + end +endfunction diff --git a/macros/fht.sci b/macros/fht.sci index c6fd1bd..f7e5c8e 100644 --- a/macros/fht.sci +++ b/macros/fht.sci @@ -1,4 +1,17 @@ function y=fht(d,n,dim) +//The Function calculates the Fast Hartley Transform of real input. +//Calling Sequence +//M = fht (D) +//M = fht (D, N) +//M = fht (D, N, DIM) +//Parameters +//Description +//This function calculates the Fast Hartley transform of real input D. If D is a matrix, the Hartley transform is calculated along the columns by default. +//Examples +//fht(1:4) +//ans = +// 10 -4 -2 0 +//This function is being called from Octave. funcprot(0); rhs=argn(2); if(rhs<1 | rhs>3) diff --git a/macros/filter1.sci b/macros/filter1.sci new file mode 100644 index 0000000..3c32928 --- /dev/null +++ b/macros/filter1.sci @@ -0,0 +1,67 @@ +function [Y, SF] = filter1 (B, A, X, SI, DIM) +//Apply a 1-D digital filter to the data X. +//Calling Sequence +//Y = filter1(B, A, X) +//[Y, SF] = filter1(B, A, X, SI) +//[Y, SF] = filter1(B, A, X, [], DIM) +//[Y, SF] = filter1(B, A, X, SI, DIM) +//Parameters +//B: Matrix or Integer +//A: Matrix or Integer +//X: Matrix or Integer +//Description +//'filter' returns the solution to the following linear, time-invariant difference equation: +// +// N M +// +// SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x) +// +// k=0 k=0 +// +//where N=length(a)-1 and M=length(b)-1. The result is calculated over the first non-singleton dimension of X or over DIM if supplied. +// +//An equivalent form of the equation is: +// +// N M +// +// y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x) +// +// k=1 k=0 +// +// where c = a/a(1) and d = b/a(1). +//Examples +//filter([1,2,3], [3,4,5], [5,6,7]) +//ans = +// 1.6666667 3.1111111 4.4074074 +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 3 | rhs > 5) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 3 then + if(lhs==1) + Y=callOctave("filter",B,A,X) + elseif(lhs==2) + [Y, SF] = callOctave("filter",B,A,X) + else + error("Wrong number of output arguments.") + end + case 4 then + if(lhs==2) + [Y, SF] = callOctave("filter",B,A,X,SI) + else + error("Wrong number of output arguments.") + end + case 5 then + if(lhs==2) + [Y, SF] = callOctave("filter",B,A,X,SI,DIM) + else + error("Wrong number of output arguments.") + end + + end +endfunction diff --git a/macros/filter2.sci b/macros/filter2.sci new file mode 100644 index 0000000..b8b48e4 --- /dev/null +++ b/macros/filter2.sci @@ -0,0 +1,33 @@ +function Y = filter2 (B, X, SHAPE) +//Apply the 2-D FIR filter B to X. +//Calling Sequence +//Y = filter2(B, X) +//Y = filter2(B, X, SHAPE) +//Parameters +//B, X: Matrix +// SHAPE: +// 'full': pad X with zeros on all sides before filtering. +// 'same': unpadded X (default) +// 'valid': trim X after filtering so edge effects are no included. +//Description +//This function applies the 2-D FIR filter B to X. If the argument SHAPE is specified, return an array of the desired shape. +//Examples +//filter2([1,3], [4,5]) +//ans = +// 19. 5. +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 2 | rhs > 3) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 2 then + Y=callOctave("filter2",B,X) + case 3 then + Y = callOctave("filter2",B,X,SHAPE) + end + +endfunction diff --git a/macros/findpeaks.sci b/macros/findpeaks.sci new file mode 100644 index 0000000..3e7ce47 --- /dev/null +++ b/macros/findpeaks.sci @@ -0,0 +1,58 @@ +function [PKS, LOC, EXTRA] = findpeaks(DATA, varargin) +//This function find peaks on DATA. +//Calling Sequence +//[PKS, LOC, EXTRA] = findpeaks(DATA) +//[PKS, LOC, EXTRA] = findpeaks(..., PROPERTY, VALUE) +//[PKS, LOC, EXTRA] = findpeaks(..., "DoubleSided") +//Description +//Peaks of a positive array of data are defined as local maxima. For double-sided data, they are maxima of the positive part and minima of the negative part. DATA is expected to be a single column vector. +// +//The function returns the value of DATA at the peaks in PKS. The index indicating their position is returned in LOC. +// +//The third output argument is a structure with additional information: +// +//"parabol": +// A structure containing the parabola fitted to each returned peak. The structure has two fields, "x" and "pp". The field "pp" contains the coefficients of the 2nd degree polynomial and "x" the extrema of the intercal here it was fitted. +// +//"height": +// The estimated height of the returned peaks (in units of DATA). +// +//"baseline": +// The height at which the roots of the returned peaks were calculated (in units of DATA). +// +//"roots": +// The abscissa values (in index units) at which the parabola fitted to each of the returned peaks crosses the "baseline" value. The width of the peak is calculated by 'diff(roots)'. +// +//This function accepts property-value pair given in the list below: +// +//"MinPeakHeight": +// Minimum peak height (positive scalar). Only peaks that exceed this value will be returned. For data taking positive and negative values use the option "DoubleSided". Default value '2*std (abs (detrend (data,0)))'. +// +//"MinPeakDistance": +// Minimum separation between (positive integer). Peaks separated by less than this distance are considered a single peak. This distance is also used to fit a second order polynomial to the peaks to estimate their width, therefore it acts as a smoothing parameter. Default value 4. +// +//"MinPeakWidth": +// Minimum width of peaks (positive integer). The width of the peaks is estimated using a parabola fitted to the neighborhood of each peak. The neighborhood size is equal to the value of "MinPeakDistance". The width is evaluated at the half height of the peak with baseline at "MinPeakHeight". Default value 2. +// +//"DoubleSided": +// Tells the function that data takes positive and negative values. The base-line for the peaks is taken as the mean value of the function. This is equivalent as passing the absolute value of the data after removing the mean. +funcprot(0); +rhs=argn(2); +lhs=argn(1) +if(rhs<1 | rhs>2) then + error("Wrong number of input arguments."); +end +if(lhs<3 | lhs>3) then + error("Wrong number of output arguments."); +end + +select(rhs) +case 1 then + [PKS, LOC, EXTRA] = callOctave("findpeaks", DATA); +case 2 then + [PKS, LOC, EXTRA] = callOctave("findpeaks", DATA, varargin(1)); +case 3 then + [PKS, LOC, EXTRA] = callOctave("findpeaks", DATA, varargin(1), varargin(2)); +end + +endfunction diff --git a/macros/fir1.sci b/macros/fir1.sci new file mode 100644 index 0000000..70c95b7 --- /dev/null +++ b/macros/fir1.sci @@ -0,0 +1,39 @@ +function B = fir1(N, W, varargin) +//Produce an order N FIR filter with the given frequency cutoff, returning the N+1 filter coefficients in B. +//Calling Sequence +//B = fir1(N, W) +//B = fir1(N, W, TYPE) +//B = fir1(N, W, TYPE, WINDOW) +//B = fir1(N, W, TYPE, WINDOW, NOSCALE) +//Parameters +//N: Integer +//W: Integer or Vector +//Description +// Produce an order N FIR filter with the given frequency cutoff W, returning the N+1 filter coefficients in B. If W is a scalar, it specifies the frequency cutoff for a lowpass or highpass filter. If W is a two-element vector, the two values specify the edges of a bandpass or bandstop filter. If W is an N-element vector, each value specifies a band edge of a multiband pass/stop filter. +// +//The filter TYPE can be specified with one of the following strings: "low", "high", "stop", "pass", "bandpass", "DC-0", or "DC-1". The default is "low" is W is a scalar, "pass" if W is a pair, or "DC-0" if W is a vector with more than 2 elements. +// +//An optional shaping WINDOW can be given as a vector with length N+1. If not specified, a Hamming window of length N+1 is used. +// +//With the option "noscale", the filter coefficients are not normalized. The default is to normalize the filter such that the magnitude response of the center of the first passband is 1. +//Examples +// fir1 (5, 0.4) +//ans = +// 9.2762e-05 9.5482e-02 4.0443e-01 4.0443e-01 9.5482e-02 9.2762e-05 +funcprot(0); +rhs = argn(2); +if(rhs<2 | rhs>5) +error("Wrong number of input arguments."); +end + + select(rhs) + case 2 then + B = callOctave("fir1", N, W); + case 3 then + B = callOctave("fir1", N, W, varargin(1)); + case 4 then + B = callOctave("fir1", N, W, varargin(1), varargin(2)); + case 5 then + B = callOctave("fir1", N, W, varargin(1), varargin(2), varargin(3)); + end +endfunction diff --git a/macros/fir2.sci b/macros/fir2.sci new file mode 100644 index 0000000..990fb3e --- /dev/null +++ b/macros/fir2.sci @@ -0,0 +1,41 @@ +function B = fir2(N, F, M, varargin) +//Produce an order N FIR filter with arbitrary frequency response M over frequency bands F, returning the N+1 filter coefficients in B. +//Calling Sequence +//B = fir2(N, F, M) +//B = fir2(N, F, M, GRID_N) +//B = fir1(N, F, M, GRID_N, RAMP_N) +//B = fir1(N, F, M, GRID_N, RAMP_N, WINDOW) +//Parameters +//N: Integer +//F, M: Vector +//Description +//Produce an order N FIR filter with arbitrary frequency response M over frequency bands F, returning the N+1 filter coefficients in B. The vector F specifies the frequency band edges of the filter response and M specifies the magnitude response at each frequency. +// +//The vector F must be nondecreasing over the range [0,1], and the first and last elements must be 0 and 1, respectively. A discontinuous jump in the frequency response can be specified by duplicating a band edge in F with different values in M. +// +//The resolution over which the frequency response is evaluated can be controlled with the GRID_N argument. The default is 512 or the next larger power of 2 greater than the filter length. +// +//The band transition width for discontinuities can be controlled with the RAMP_N argument. The default is GRID_N/25. Larger values will result in wider band transitions but better stopband rejection. +// +//An optional shaping WINDOW can be given as a vector with length N+1. If not specified, a Hamming window of length N+1 is used. +//Examples +// fir2 (10, [0, 0.5, 1], [1, 2, 3]) +//ans = +// -0.00130 0.00000 -0.01792 0.00000 -0.36968 2.00000 -0.36968 0.00000 -0.01792 0.00000 -0.00130 +funcprot(0); +rhs = argn(2); +if(rhs<3 | rhs>6) +error("Wrong number of input arguments."); +end + + select(rhs) + case 3 then + B = callOctave("fir2", N, F, M); + case 4 then + B = callOctave("fir2", N, F, M, varargin(1)); + case 5 then + B = callOctave("fir2", N, F, M, varargin(1), varargin(2)); + case 6 then + B = callOctave("fir2", N, F, M, varargin(1), varargin(2), varargin(3)); + end +endfunction diff --git a/macros/fractdiff.sci b/macros/fractdiff.sci new file mode 100644 index 0000000..979a079 --- /dev/null +++ b/macros/fractdiff.sci @@ -0,0 +1,17 @@ +function y= fractdiff(x,d) +//Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1. +//Calling Sequence +// fractdiff (X, D) +//Description +//This is an Octave function. +//Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1. + funcprot(0); + rhs= argn(2); + if(rhs < 2 | rhs >2) + error("Wrong number of input arguments"); + end + select(rhs) + case 2 then + y= callOctave("fractdiff",x,d); + end +endfunction
\ No newline at end of file diff --git a/macros/freqs.sci b/macros/freqs.sci index 88773fe..05dd294 100644 --- a/macros/freqs.sci +++ b/macros/freqs.sci @@ -24,6 +24,6 @@ end select (rhs) case 3 then - y = callOctave("freqs",b, a, w) + h = callOctave("freqs",b, a, w) end endfunction diff --git a/macros/freqz.sci b/macros/freqz.sci new file mode 100644 index 0000000..dc71b75 --- /dev/null +++ b/macros/freqz.sci @@ -0,0 +1,71 @@ +function [H, W] = freqz(B, varargin) +//This function returns the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively. +//Calling Sequence +//[H, W] = freqz(B, A, N, "whole") +//[H, W] = freqz(B) +//[H, W] = freqz(B, A) +//[H, W] = freqz(B, A, N) +//H = freqz(B, A, W) +//[H, W] = freqz(..., FS) +//freqz(...) +//Parameters +//B, A, N: Integer or Vector +//Description +// Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively. +// +//The response is evaluated at N angular frequencies between 0 and 2*pi. +// +//The output value W is a vector of the frequencies. +// +//If A is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR filter). +// +//If N is omitted, a value of 512 is assumed. For fastest computation, N should factor into a small number of small primes. +// +//If the fourth argument, "whole", is omitted the response is evaluated at frequencies between 0 and pi. +// +// 'freqz (B, A, W)' +// +//Evaluate the response at the specific frequencies in the vector W. The values for W are measured in radians. +// +// '[...] = freqz (..., FS)' +// +//Return frequencies in Hz instead of radians assuming a sampling rate FS. If you are evaluating the response at specific frequencies W, those frequencies should be requested in Hz rather than radians. +// +// 'freqz (...)' +// +//Plot the magnitude and phase response of H rather than returning them. +//Examples +//H = freqz([1,2,3], [4,3], [1,2,5]) +//ans = +// 0.4164716 - 0.5976772i - 0.4107690 - 0.2430335i 0.1761948 + 0.6273032i +funcprot(0); +rhs=argn(2); +lhs=argn(1); +if(rhs<2 | rhs>4) then + error("Wrong number of input arguments."); +end +if (lhs<1 | lhs>2) + error("Wrong number of output arguments."); +end +if (lhs==1) then +select(rhs) +case 1 then + H = callOctave("freqz",B); +case 2 then + H = callOctave("freqz",B, varargin(1)); +case 3 then + H = callOctave("freqz",B, varargin(1), varargin(2)); +end +elseif (lhs==2) then + select(rhs) +case 1 then + [H, W] = callOctave("freqz",B); +case 2 then + [H, W] = callOctave("freqz",B, varargin(1)); +case 3 then + [H, W] = callOctave("freqz",B, varargin(1), varargin(2)); +case 4 then + [H, W] = callOctave("freqz", B, varargin(1), varargin(2), varargin(3)); +end +end +endfunction diff --git a/macros/fwht.sci b/macros/fwht.sci index 280bbee..e0a15ff 100644 --- a/macros/fwht.sci +++ b/macros/fwht.sci @@ -1,4 +1,28 @@ function y = fwht(x, varargin) +//Compute the Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm +//Calling Sequence +//fwht (x) +//fwht (x, n) +//fwht (x, n, order) +//Parameters +//x: real or complex valued scalar or vector +//n: x is truncated or extended to have length n +//order: Specification of order in which coefficients should be arranged +//Description +//Compute the Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm. If the input is a matrix, the FWHT is calculated along the columns of x. +// +//The number of elements of x must be a power of 2; if not, the input will be extended and filled with zeros. If a second argument is given, the input is truncated or extended to have length n. +// +//The third argument specifies the order in which the returned Walsh-Hadamard transform coefficients should be arranged. The order may be any of the following strings: +// +//"sequency" +//The coefficients are returned in sequency order. This is the default if order is not given. +// +//"hadamard" +//The coefficients are returned in Hadamard order. +// +//"dyadic" +//The coefficients are returned in Gray code order. funcprot(0); rhs= argn(2); diff --git a/macros/hamming.sci b/macros/hamming.sci new file mode 100644 index 0000000..49a970f --- /dev/null +++ b/macros/hamming.sci @@ -0,0 +1,24 @@ +function y = hamming(m, varargin) +//Return the filter coefficients of a Hamming window of length M +//Calling Sequence +//hamming (M) +//hamming (M, "periodic") +//hamming (M, "symmetric") +//Parameters +//M: real scalar, which will be the length of hamming window +//Description +//Return the filter coefficients of a Hamming window of length M. +//If the optional argument "periodic" is given, the periodic form of the window is returned. This is equivalent to the window of length M+1 with the last coefficient removed. The optional argument "symmetric" is equivalent to not specifying a second argument. +funcprot(0); +rhs= argn(2); +if(rhs <1 | rhs>2) +error("Wrong number of Input parameters"); +end + +select(rhs) + case 1 then + y= callOctave("hamming", m); + case 2 then + y= callOctave("hamming", m , varargin(1)); +end +endfunction diff --git a/macros/hanning.sci b/macros/hanning.sci new file mode 100644 index 0000000..60ca783 --- /dev/null +++ b/macros/hanning.sci @@ -0,0 +1,25 @@ +function y = hanning(m, varargin) +//Return the filter coefficients of a Hanning window of length M +//Calling Sequence +//hanning (M) +//hanning (M, "periodic") +//hanning (M, "symmetric") +//Parameters +//M: real scalar, which will be the length of hanning window +//Description +//Return the filter coefficients of a Hanning window of length M. +//If the optional argument "periodic" is given, the periodic form of the window is returned. This is equivalent to the window of length M+1 with the last coefficient removed. The optional argument "symmetric" is equivalent to not specifying a second argument. + +funcprot(0); +rhs= argn(2); +if(rhs <1 | rhs>2) +error("Wrong number of Input parameters"); +end + +select(rhs) + case 1 then + y= callOctave("hanning", m); + case 2 then + y= callOctave("hanning", m , varargin(1)); +end +endfunction diff --git a/macros/hilbert1.sci b/macros/hilbert1.sci index 864067f..fbcb136 100644 --- a/macros/hilbert1.sci +++ b/macros/hilbert1.sci @@ -1,4 +1,26 @@ function h= hilbert1(f, varargin) +//Analytic extension of real valued signal. +//Calling Sequence +// h= hilbert1(f) +// h= hilbert1(f,N) +// h= hilbert1(f,N,dim) +//Parameters +//f: real or complex valued scalar or vector +//N: The result will have length N +//dim : It analyses the input in this dimension +//Description +//h = hilbert1 (f) computes the extension of the real valued signal f to an analytic signal. If f is a matrix, the transformation is applied to each column. For N-D arrays, the transformation is applied to the first non-singleton dimension. +// +//real (h) contains the original signal f. imag (h) contains the Hilbert transform of f. +// +//hilbert1 (f, N) does the same using a length N Hilbert transform. The result will also have length N. +// +//hilbert1 (f, [], dim) or hilbert1 (f, N, dim) does the same along dimension dim. +//Examples +//## notice that the imaginary signal is phase-shifted 90 degrees +// t=linspace(0,10,256); +// z = hilbert1(sin(2*pi*0.5*t)); +// grid on; plot(t,real(z),';real;',t,imag(z),';imag;'); funcprot(0); rhs= argn(2); diff --git a/macros/hurst.sci b/macros/hurst.sci index 1a99f8c..27507fb 100644 --- a/macros/hurst.sci +++ b/macros/hurst.sci @@ -1,5 +1,13 @@ function y = hurst(x) - +// Estimate the Hurst parameter of sample X via the rescaled r statistic. +//Calling Sequence +//hurst(X) +//variable=hurst(X) +//Parameters +//X: X is a matrix, the parameter of sample X via the rescaled r statistic +//Description +//This is an Octave function. +//This function estimates the Hurst parameter of sample X via the rescaled rstatistic. funcprot(0); rhs= argn(2); if(rhs<1 | rhs>1) diff --git a/macros/idct1.sci b/macros/idct1.sci index d398e56..5015187 100644 --- a/macros/idct1.sci +++ b/macros/idct1.sci @@ -1,14 +1,27 @@ function y = idct1(x,n) +//Compute the inverse discrete cosine transform of input. +//Calling Sequence +//Y = idct1(X) +//Y = idct1(X, N) +//Parameters +//X: Matrix or integer +//N: If N is given, then X is padded or trimmed to length N before computing the transform. +//Description +// This function computes the inverse discrete cosine transform of input X. If N is given, then X is padded or trimmed to length N before computing the transform. If X is a matrix, compute the transform along the columns of the the matrix. The transform is faster if X is real-valued and even length. +//Examples +//idct1([1,3,6]) +//ans = +// 5.1481604 - 4.3216292 0.9055197 funcprot(0); -rhs=argn(2) +rhs=argn(2); if (rhs<1 | rhs>2) then - error("Wrong number of input arguments.") + error("Wrong number of input arguments."); end select(rhs) case 1 then - y=callOctave("idct",x) + y=callOctave("idct",x); case 2 then - y=callOctave("idct",x,n) + y=callOctave("idct",x,n); end endfunction diff --git a/macros/idct2.sci b/macros/idct2.sci index 1cfacab..c48980a 100644 --- a/macros/idct2.sci +++ b/macros/idct2.sci @@ -1,8 +1,22 @@ function y = idct2(x,varargin) +//This function computes the inverse 2-D discrete cosine transform of input matrix. +//Calling Sequence +//Y = idct2(X) +//Y = idct2(X, M, N) +//Y = idct2(X, [M, N]) +//Parameters +//X: Matrix or integer +//M, N: If specified Matrix X is padded with M rows and N columns. +//Description +// This function computes the inverse 2-D discrete cosine transform of matrix X. If M and N are specified, the input is either padded or truncated to have M rows and N columns. +//Examples +//idct2(3, 4, 6) +//ans = +// 2.811261 0.612372 -0.525856 0.250601 0.612372 -0.086516 funcprot(0); -rhs=argn(2) +rhs=argn(2); if (rhs<1 | rhs>3) then - error("Wrong number of input arguments.") + error("Wrong number of input arguments."); end select(rhs) case 1 then diff --git a/macros/idst1.sci b/macros/idst1.sci index 5276a70..98fc874 100644 --- a/macros/idst1.sci +++ b/macros/idst1.sci @@ -1,4 +1,17 @@ function y = idst1(x,varargin) +//This function computes the inverse type I discrete sine transform. +//Calling Sequence +//Y = idst(X) +//Y = idst(X, N) +//Parameters +//X: Matrix or integer +//N: If N is given, then X is padded or trimmed to length N before computing the transform. +//Description +//This function computes the inverse type I discrete sine transform of Y. If N is given, then Y is padded or trimmed to length N before computing the transform. If Y is a matrix, compute the transform along the columns of the the matrix. +//Examples +//idst([1,3,6]) +//ans = +// 3.97487 -2.50000 0.97487 funcprot(0); rhs=argn(2); if(rhs<1 | rhs>2) then diff --git a/macros/ifft21.sci b/macros/ifft2.sci index 25ed82f..8ecb1a5 100644 --- a/macros/ifft21.sci +++ b/macros/ifft2.sci @@ -1,4 +1,4 @@ -function res = ifft21 (A, m, n) +function res = ifft2 (A, m, n) //Calculates the inverse two-dimensional discrete Fourier transform of A using a Fast Fourier Transform algorithm. //Calling Sequence //ifft2 (A, m, n) @@ -15,7 +15,7 @@ function res = ifft21 (A, m, n) //x = [1 2 3; 4 5 6; 7 8 9] //m = 4 //n = 4 -//ifft21 (A, m, n) +//ifft2 (A, m, n) //ans = // // 2.81250 + 0.00000i -0.37500 + 0.93750i 0.93750 + 0.00000i -0.37500 - 0.93750i diff --git a/macros/ifftn.sci b/macros/ifftn.sci new file mode 100644 index 0000000..3d26c04 --- /dev/null +++ b/macros/ifftn.sci @@ -0,0 +1,27 @@ +function y = ifftn(A, varargin) +//Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm. +//Calling Sequence +//Y = ifftn(A) +//Y = ifftn(A, size) +//Parameters +//A: Matrix +//Description +//Compute the inverse N-dimensional discrete Fourier transform of A using a Fast Fourier Transform (FFT) algorithm. The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension of A, then the dimension of A is truncated prior to performing the inverse FFT. Otherwise, if an element of SIZE is larger than the corresponding dimension then A is resized and padded with zeros. +//Examples +//ifftn([2,3,4]) +//ans = +// 3. - 0.5 - 0.2886751i - 0.5 + 0.2886751i +funcprot(0); +funcprot(0); +rhs = argn(2) +if(rhs<1 | rhs>2) +error("Wrong number of input arguments."); +end + + select(rhs) + case 1 then + y = callOctave("ifftn",A); + case 2 then + y = callOctave("ifftn",A, varargin(1)); + end +endfunction diff --git a/macros/ifftshift1.sci b/macros/ifftshift1.sci new file mode 100644 index 0000000..7426130 --- /dev/null +++ b/macros/ifftshift1.sci @@ -0,0 +1,24 @@ +function y= ifftshift1(X,DIM) +//Undo the action of the 'fftshift1' function. +//Calling Sequence +// ifftshift1 (X) +// ifftshift1 (X, DIM) +//Parameters +//X:It is a vector of N elements corresponding to time samples +//DIM: The optional DIM argument can be used to limit the dimension along which the permutation occurs +//Description +//This is an Octave function. +//Undo the action of the 'fftshift1' function. +// +//For even length X, 'fftshift1' is its own inverse, but odd lengths differ slightly. + rhs= argn(2); + if(rhs <1 | rhs >2) + error('Wrong number of Input arguments'); + end + select(rhs) + case 1 then + y=callOctave("ifftshift",X); + case 2 then + y=callOctave("ifftshift",X,DIM); + end +endfunction
\ No newline at end of file diff --git a/macros/ifht.sci b/macros/ifht.sci index aacbd7a..7f865cb 100644 --- a/macros/ifht.sci +++ b/macros/ifht.sci @@ -1,4 +1,22 @@ function m = ifht(d, varargin) +//Calculate the inverse Fast Hartley Transform of real input D +//Calling Sequence +//m= ifht (d) +//m= ifht (d,n) +//m= ifht (d,n,dim) +//Parameters +//d: real or complex valued scalar or vector +//n: Similar to the options of FFT function +//dim: Similar to the options of FFT function +//Description +//Calculate the inverse Fast Hartley Transform of real input d. If d is a matrix, the inverse Hartley transform is calculated along the columns by default. The options n and dim are similar to the options of FFT function. +// +//The forward and inverse Hartley transforms are the same (except for a scale factor of 1/N for the inverse hartley transform), but implemented using different functions. +// +//The definition of the forward hartley transform for vector d, m[K] = 1/N \sum_{i=0}^{N-1} d[i]*(cos[K*2*pi*i/N] + sin[K*2*pi*i/N]), for 0 <= K < N. m[K] = 1/N \sum_{i=0}^{N-1} d[i]*CAS[K*i], for 0 <= K < N. +//Examples +//ifht(1 : 4) +//ifht(1:4, 2) funcprot(0); rhs= argn(2); if(rhs<1 | rhs>3) diff --git a/macros/ifwht.sci b/macros/ifwht.sci index 163c032..c1517ac 100644 --- a/macros/ifwht.sci +++ b/macros/ifwht.sci @@ -1,4 +1,27 @@ function y= ifwht(x, varargin) +// Compute the inverse Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm +// Calling Sequence +// ifwht (x) +// ifwht (x, n) +// ifwht (x, n, order) +//Parameters +//x: real or complex valued scalar or vector +//n: Input is truncated or extended to have a length of n +//order: Specifies the order in which the returned inverse Walsh-Hadamard transform +//Description +//Compute the inverse Walsh-Hadamard transform of x using the Fast Walsh-Hadamard Transform (FWHT) algorithm. If the input is a matrix, the inverse FWHT is calculated along the columns of x. +//The number of elements of x must be a power of 2; if not, the input will be extended and filled with zeros. If a second argument is given, the input is truncated or extended to have length n. +//The third argument specifies the order in which the returned inverse Walsh-Hadamard transform coefficients should be arranged. The order may be any of the following strings: +// +//"sequency" +//The coefficients are returned in sequency order. This is the default if order is not given. +// +//"hadamard" +//The coefficients are returned in Hadamard order. +// +//"dyadic" +//The coefficients are returned in Gray code order. + funcprot(0); rhs= argn(2); diff --git a/macros/invfreq.sci b/macros/invfreq.sci index dde23ef..a720115 100644 --- a/macros/invfreq.sci +++ b/macros/invfreq.sci @@ -1,6 +1,28 @@ function [B,A] = invfreq(H,F,nB,nA,W,iter,tol, plane) - - +// Calculates inverse frequency vectors +// +// Calling Sequence +//[B,A] = invfreq(H,F,nB,nA) +//[B,A] = invfreq(H,F,nB,nA,W) +//[B,A] = invfreq(H,F,nB,nA,W,[],[],plane) +//[B,A] = invfreq(H,F,nB,nA,W,iter,tol,plane) +// +// Parameters +// H: desired complex frequency response,It is assumed that A and B are real polynomials, hence H is one-sided. +// F: vector of frequency samples in radians +// nA: order of denominator polynomial A +// nB: order of numerator polynomial B +// +// Description +//Fit filter B(z)/A(z) or B(s)/A(s) to complex frequency response at frequency points F. A and B are real polynomial coefficients of order nA and nB respectively. Optionally, the fit-errors can be weighted vs frequency according to the weights W. Also, the transform plane can be specified as either 's' for continuous time or 'z' for discrete time. 'z' is chosen by default. Eventually, Steiglitz-McBride iterations will be specified by iter and tol. +// +// Examples +// [B,A] = butter(12,1/4); +// [H,w] = freqz(B,A,128); +// [Bh,Ah] = invfreq(H,F,4,4); +// Hh = freqz(Bh,Ah); +// disp(sprintf('||frequency response error|| = %f',norm(H-Hh))); +// funcprot(0); lhs= argn(1); rhs= argn(2); Binary files differdiff --git a/macros/mscohere.sci b/macros/mscohere.sci new file mode 100644 index 0000000..357da58 --- /dev/null +++ b/macros/mscohere.sci @@ -0,0 +1,82 @@ +function [PXX, FREQ] = mscohere (X, Y, WINDOW, OVERLAP, NFFT, FS, RANGE) +//It estimate (mean square) coherence of signals x and y. +//Calling Sequence +//[Pxx, freq] = mscohere (x, y) +//[Pxx, freq] = mscohere (x, y, window) +//[Pxx, freq] = mscohere (x, y, window, overlap) +//[Pxx, freq] = mscohere (x, y, window, overlap, Nfft) +//[Pxx, freq] = mscohere (x, y, window, overlap, Nfft, Fs) +//[Pxx, freq] = mscohere (x, y, window, overlap, Nfft, Fs, range) +//mscohere (...) +//Description +//This function estimate (mean square) coherence of signals x and y. +//Examples +//[Pxx, freq] = mscohere(4,5) +//ans = +//PXX = +// Nan +// 1 +//FREQ = +// 0 +// 0.5 +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 2 | rhs > 7) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 2 then + if(lhs==0) + callOctave("mscohere",X,Y) + elseif(lhs==2) + [PXX, FREQ] = callOctave("mscohere",X,Y) + else + error("Wrong number of output arguments.") + end + + case 3 then + if(lhs==0) + callOctave("mscohere",X,Y,WINDOW) + elseif(lhs==2) + [PXX, FREQ] = callOctave("mscohere",X,Y,WINDOW) + else + error("Wrong number of output arguments.") + end + case 4 then + if(lhs==0) + callOctave("mscohere",X,Y,WINDOW,OVERLAP) + elseif(lhs==2) + [PXX, FREQ] = callOctave("mscohere",X,Y,WINDOW,OVERLAP) + else + error("Wrong number of output arguments.") + end + case 5 then + if(lhs==0) + callOctave("mscohere",X,Y,WINDOW,OVERLAP,NFFT) + elseif(lhs==2) + [PXX, FREQ] = callOctave("mscohere",X,Y,WINDOW,OVERLAP,NFFT) + else + error("Wrong number of output arguments.") + end + case 6 then + if(lhs==0) + callOctave("mscohere",X,Y,WINDOW,OVERLAP,NFFT,FS) + elseif(lhs==2) + [PXX, FREQ] = callOctave("mscohere",X,Y,WINDOW,OVERLAP,NFFT,FS) + else + error("Wrong number of output arguments.") + end + case 7 then + if(lhs==0) + callOctave("mscohere",X,Y,WINDOW,OVERLAP,NFFT,FS,RANGE,) + elseif(lhs==2) + [PXX, FREQ] = callOctave("mscohere",X,Y,WINDOW,OVERLAP,NFFT,FS,RANGE) + else + error("Wrong number of output arguments.") + end + end +endfunction + diff --git a/macros/names b/macros/names index b3d1310..800df1a 100644 --- a/macros/names +++ b/macros/names @@ -1,16 +1,21 @@ ac2poly ac2rc arParEst +ar_psd arburg arch_rnd +arch_test +arch_fit arcov arma_rnd armcov aryule +autoreg_matrix barthannwin bartlett besselap besself +bilinear bitrevorder blackman blackmanharris @@ -37,9 +42,11 @@ chirp cl2bp clustersegment cmorwavf +cohere convmtx corrmtx cplxreal +cpsd cummax cummin czt @@ -47,11 +54,15 @@ db db2pow dctmtx decimate +detrend1 dftmtx +diffpara diric downsample dst1 +durbinlevinson dutycycle +dwt ellip ellipap ellipord @@ -60,18 +71,28 @@ eqtflength falltime fft1 fft21 +fftconv fftfilt fftw1 +fftn +fftshift1 fht +filter1 +filter2 filternorm filtfilt filtic filtord +findpeaks +fir1 +fir2 firpmord firtype flattopwin fracshift +fractdiff freqs +freqz fwhm fwhmjlt fwht @@ -82,7 +103,9 @@ gausswin gmonopuls goertzel grpdelay +hamming hann +hanning helperHarmonicDistortionAmplifier hilbert1 hurst @@ -92,6 +115,8 @@ idct2 idst1 ifft1 ifft21 +ifftn +ifftshift1 ifht ifwht iirlp2mb @@ -131,6 +156,7 @@ midcross modulate morlet movingrms +mscohere musicBase ncauer nnls @@ -163,6 +189,7 @@ pulsesep pulsewidth pulstran pyulear +pwelch qp_kaiser rc2ac rc2is @@ -217,6 +244,7 @@ tf2sos tf2zp tf2zpk tfestimate +tfe transpose trial_iirlp2mb triang @@ -227,6 +255,7 @@ udecode uencode ultrwin unshiftdata +unwrap2 upfirdn upsample upsamplefill diff --git a/macros/periodogram.sci b/macros/periodogram.sci index 33e15af..ca8995e 100755 --- a/macros/periodogram.sci +++ b/macros/periodogram.sci @@ -1,20 +1,46 @@ function [d,n]=periodogram(a,b,c,d,e) +//Return the periodogram (Power Spectral Density) of X +//Calling Sequence +// [PXX, W] = periodogram (X) +// [PXX, W] = periodogram (X, WIN) +// [PXX, W] = periodogram (X, WIN, NFFT) +// [PXX, W] = periodogram (X, WIN, NFFT, FS) +// [PXX, W] = periodogram (..., "RANGE") +//Parameters +// X:data vector. If X is real-valued a one-sided spectrum is estimated. If X is complex-valued, or "RANGE" specifies "twosided", the full spectrum is estimated. +//WIN: window weight data. If window is empty or unspecified a default rectangular window is used. Otherwise, the window is applied to the signal ('X .* WIN') before computing th periodogram. The window data must be a vector of the same length as X. +//NFFT:number of frequency bins. The default is 256 or the next higher power of 2 greater than the length of X ('max (256,2.^nextpow2 (length (x)))'). If NFFT is greater than the length of the input then X will be zero-padded to the length of NFFT. +//FS:sampling rate. The default is 1. +//RANGE:range of spectrum. "onesided" computes spectrum from [0..nfft/2+1]."twosided" computes spectrum from [0..nfft-1]. +//Description +//The optional second output W are the normalized angular frequencies. For a one-sided calculation W is in the range [0, pi]. If NFFT is even and [0, pi) if NFFT is odd. Similarly, for a two-sided calculation W is in the range [0, 2*pi] or [0, 2*pi)depending on NFFT. +// +//If a sampling frequency is specified, FS, then the output frequencies F will be in the range [0, FS/2] or [0, FS/2) for one-sided calculations. For two-sided calculations the range will be [0, FS). +// +//When called with no outputs the periodogram is immediately plotted in the current figure window. funcprot(0); - [nargout,nargin]=argn(); - select nargin + lhs= argn(1); + rhs= argn(2); + if(rhs<1 | rhs>5) + error("Wrong number of input arguments"); + end + if(lhs>2 | lhs< 2) + error("Wrong number of output arguments"); + end + select(rhs) case 1 then - [d,n]=callOctave('periodogram',a); + [d,n]= callOctave('periodogram',a); case 2 then - [d,n]=callOctave('periodogram',a,b); + [d,n]= callOctave('periodogram',a,b); + case 3 then - [d,n]=callOctave('periodogram',a,b,c); + [d,n]= callOctave('periodogram',a,b,c); + case 4 then - [d,n]=callOctave('periodogram',a,b,c,d); + [d,n]= callOctave('periodogram',a,b,c,d); + case 5 then - [d,n]=callOctave('periodogram',a,b,c,d,e); - else - error("Incorrect no. of Input Arguments"); + [d,n]= callOctave('periodogram',a,b,c,d,e); end - endfunction diff --git a/macros/pwelch.sci b/macros/pwelch.sci new file mode 100644 index 0000000..3e4aa8d --- /dev/null +++ b/macros/pwelch.sci @@ -0,0 +1,67 @@ +function [spectra, Pxx_ci, freqn] = pwelch(x, varargin) +//Estimate power spectral density of data "x" by the Welch (1967) periodogram/FFT method. +//Calling Sequence +//[spectra,freq] = pwelch(x, window, overlap, Nfft, Fs, range, plot_type, detrend, sloppy) +//[spectra,freq] = pwelch(x, y, window, overlap, Nfft, Fs, range, plot_type, detrend, sloppy, results) +//[spectra,Pxx_ci,freq] = pwelch(x, window, overlap, Nfft, Fs, conf, range, plot_type, detrend, sloppy) +//[spectra,Pxx_ci,freq] = pwelch(x, y, window, overlap, Nfft, Fs, conf, range, plot_type, detrend, sloppy, results) +//Parameters +//x: [non-empty vector] system-input time-series data +// +//y: [non-empty vector] system-output time-series data +// +//window: [real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument. +// +//overlap: [real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 . +// +//Nfft: [integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently. +// +//Fs:[real scalar] sampling frequency (Hertz); default=1.0 +// +//conf: [real scalar] confidence level between 0 and 1. Confidence intervals of the spectral density are estimated from scatter in the periodograms and are returned as Pxx_ci. Pxx_ci(:,1) is the lower bound of the confidence interval and Pxx_ci(:,2) is the upper bound. If there are three return values, or conf is an empty matrix, confidence intervals are calculated for conf=0.95 . If conf is zero or is not given, confidence intervals are not calculated. Confidence intervals can be obtained only for the power spectral density of x; nothing else. +// +//range: +//'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. +//'whole', 'twosided' : frequency range of the spectrum is -Fs/2 to Fs/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 +//'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'. +// +//plot_type: +//'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db': specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. +// +//detrend: 'no-strip', 'none' -- do NOT remove mean value from the data 'short', 'mean' -- remove the mean value of each segment from each segment of the data. +//'linear', -- remove linear trend from each segment of the data. +//'long-mean' -- remove the mean value from the data before splitting it into segments. This is the default. +// +//sloppy: FFT length is rounded up to the nearest integer power of 2 by zero padding. FFT length is adjusted after addition of padding by explicit Nfft argument. The default is to use exactly the FFT and window. +//Description +//Estimate power spectral density of data "x" by the Welch (1967) periodogram/FFT method. The data is divided into segments. If "window" is a vector, each segment has the same length as "window" and is multiplied by "window" before (optional) zero-padding and calculation of its periodogram. If "window" is a scalar, each segment has a length of "window" and a Hamming window is used. The spectral density is the mean of the periodograms, scaled so that area under the spectrum is the same as the mean square of the data. This equivalence is supposed to be exact, but in practice there is a mismatch of up to 0.5% when comparing area under a periodogram with the mean square of the data. +funcprot(0); +rhs=argn(2); +lhs=argn(1) +if(rhs<9 | rhs>9) then + error("Wrong number of input arguments."); +end +if(rhs<11 | rhs>11) then + error("Wrong number of input arguments."); +end +if(lhs<2 | lhs>3) then + error("Wrong number of output arguments."); +end +select(rhs) +case 9 then + select(lhs) + case 2 then + [spectra, freqn] = callOctave("pwelch", x, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6), varargin(7), varargin(8)); + case 3 then + [spectra, Pxx_ci, freqn] = callOctave("pwelch", x, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6), varargin(7), varargin(8)); + end +case 11 then + select(lhs) + case 2 then + [spectra, freqn] = callOctave("pwelch", x, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6), varargin(7), varargin(8), varargin(9), varargin(10)); + case 3 then + [spectra, Pxx_ci, freqn] = callOctave("pwelch", x, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6), varargin(7), varargin(8), varargin(9), varargin(10)); + end +end + +endfunction diff --git a/macros/rceps.sci b/macros/rceps.sci index 065e482..8b4d89a 100644 --- a/macros/rceps.sci +++ b/macros/rceps.sci @@ -1,5 +1,17 @@ function [y, xm]= rceps(x) - +//Produce the cepstrum of the signal x, and if desired, the minimum phase reconstruction of the signal x. +//Calling Sequence +//[y, xm] = rceps(x) +//Parameters +//x: real or complex vector input +//Produce the cepstrum of the signal x, and if desired, the minimum phase reconstruction of the signal x. If x is a matrix, do so for each column of the matrix. +//Examples +// f0 = 70; Fs = 10000; # 100 Hz fundamental, 10kHz sampling rate +// a = poly (0.985 * exp (1i*pi*[0.1, -0.1, 0.3, -0.3])); # two formants +// s = 0.005 * randn (1024, 1); # Noise excitation signal +// s(1:Fs/f0:length(s)) = 1; # Impulse glottal wave +// x = filter (1, a, s); # Speech signal in x +// [y, xm] = rceps (x .* hanning (1024)); # cepstrum and min phase reconstruction funcprot(0) lhs= argn(1) rhs= argn(2) diff --git a/macros/remez1.sci b/macros/remez1.sci index aabb25e..d9cfd29 100644 --- a/macros/remez1.sci +++ b/macros/remez1.sci @@ -1,4 +1,19 @@ function b = remez1(n,f,a, varargin) +//Parks-McClellan optimal FIR filter design +//Calling Sequence +//b = remez1 (n, f, a) +//b = remez1 (n, f, a, w) +//b = remez1 (n, f, a, w, ftype) +//b = remez1 (n, f, a, w, ftype, griddensity) +//Parameters +//n: gives the number of taps in the returned filter +//f:gives frequency at the band edges [b1 e1 b2 e2 b3 e3 …] +//a:gives amplitude at the band edges [a(b1) a(e1) a(b2) a(e2) …] +//w:gives weighting applied to each band +//ftype:is "bandpass", "hilbert" or "differentiator" +//griddensity:determines how accurately the filter will be constructed. The minimum value is 16, but higher numbers are slower to compute. +//Description +// Frequency is in the range (0, 1), with 1 being the Nyquist frequency. funcprot(0); rhs= argn(2); diff --git a/macros/sigmoid_train.sci b/macros/sigmoid_train.sci index bba751d..181584a 100644 --- a/macros/sigmoid_train.sci +++ b/macros/sigmoid_train.sci @@ -1,4 +1,16 @@ function y =sigmoid_train(t, ranges, rc) +// Evaluate a train of sigmoid functions at T. +//Calling Sequence +//y = sigmoid_train(t, ranges, rc) +//Parameters +//t: integer +//ranges: matrix +//Description +//The number and duration of each sigmoid is determined from RANGES. Each row of RANGES represents a real interval, e.g. if sigmoid 'i' starts at 't=0.1' and ends at 't=0.5', then 'RANGES(i,:) = [0.1 0.5]'. The input RC is an array that defines the rising and falling time constants of each sigmoid. Its size must equal the size of RANGES. +//Examples +//sigmoid_train(0.1,[1:3],4) +//ans = +// 0.27375 funcprot(0); rhs=argn(2); if (rhs<3 | rhs>3) then diff --git a/macros/sinetone.sci b/macros/sinetone.sci index 006a2e0..407fa45 100644 --- a/macros/sinetone.sci +++ b/macros/sinetone.sci @@ -1,5 +1,17 @@ function y= sinetone(x, varargin) - +//Return a sinetone of the input +//Calling Sequence +//y= sinetone(FREQ) +//y= sinetone(FREQ, RATE) +//y= sinetone(FREQ, RATE, SEC) +//y= sinetone(FREQ, RATE, SEC, AMPL) +//Parameters +//FREQ: frequency of sinetone +//RATE: Sampling rate +//SEC: Length in seconds +//AMPL: Amplitude +//Description +//Return a sinetone of frequency FREQ with a length of SEC seconds atsampling rate RATE and with amplitude AMPL.The arguments FREQ and AMPL may be vectors of common size.The defaults are RATE = 8000, SEC = 1, and AMPL = 64. funcprot(0); rhs= argn(2); if(rhs<1 | rhs>4) diff --git a/macros/sinewave.sci b/macros/sinewave.sci index d5bdfa9..5263f35 100644 --- a/macros/sinewave.sci +++ b/macros/sinewave.sci @@ -1,5 +1,16 @@ function y= sinewave(x, varargin) - +//Return an M-element vector with I-th element given by 'sin(2* pi *(I+D-1)/N).' +//Calling Sequence +//y= sinewave(M) +//y= sinewave(M,N) +//y= sinewave(M,N,D) +//Parameters +//M: Input vector +//N: The default value for N is M +//D: The default value for D is 0 +//AMPL: Amplitude +//Description +//Return an M-element vector with I-th element given by 'sin(2* pi *(I+D-1)/N).' funcprot(0); rhs= argn(2); if(rhs<1 | rhs>3) diff --git a/macros/spectral_adf.sci b/macros/spectral_adf.sci index ea81f42..38b3990 100644 --- a/macros/spectral_adf.sci +++ b/macros/spectral_adf.sci @@ -1,5 +1,20 @@ function y= spectral_adf(x, varargin) +// Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B. +//Calling Sequence +//spectral_adf(C) +//spectral_adf(C, WIN) +//spectral_adf(C, WIN, B) +//Parameters +//C: Autocovariances +//WIN: Window names +//B: Bandwidth +//Description +//Return the spectral density estimator given a vector ofautocovariances C, window name WIN, and bandwidth, B. +//The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_lw'. +//If WIN is omitted, the triangle window is used. +//If B is omitted, '1 / sqrt (length (C))' is used. + funcprot(0); rhs= argn(2); if(rhs<1 | rhs>3) diff --git a/macros/spectral_xdf.sci b/macros/spectral_xdf.sci index fe93327..f0d457b 100644 --- a/macros/spectral_xdf.sci +++ b/macros/spectral_xdf.sci @@ -1,5 +1,18 @@ function y= spectral_xdf(x, varargin) - +// Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B. +//Calling Sequence +//spectral_xdf(X) +//spectral_xdf(X, WIN) +//spectral_xdf(X, WIN, B) +//Parameters +//X: Data Vector +//WIN: Window names +//B: Bandwidth +//Description +//Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B. +//The window name, e.g., "triangle" or "rectangle" is used to search for a function called 'WIN_lw'. +//If WIN is omitted, the triangle window is used. +//If B is omitted, '1 / sqrt (length (X))' is used. funcprot(0); rhs= argn(2); if(rhs<1 | rhs>3) diff --git a/macros/spencer.sci b/macros/spencer.sci index 537ca8a..63a1b83 100644 --- a/macros/spencer.sci +++ b/macros/spencer.sci @@ -1,5 +1,11 @@ function y= spencer(x) - +//Return Spencer's 15 point moving average of each column of X. +//Calling Sequence +//spencer(X) +//Parameters +//X: Real scalar or vector +//Description +//Return Spencer's 15 point moving average of each column of X. funcprot(0); rhs= argn(2); diff --git a/macros/stft.sci b/macros/stft.sci index 01d8f9b..7c30360 100644 --- a/macros/stft.sci +++ b/macros/stft.sci @@ -1,4 +1,39 @@ function [y,c]= stft(x, varargin) +//Compute the short-time Fourier transform of the vector X +//Calling Sequence +//Y = stft (X) +//Y = stft (X, WIN_SIZE) +//Y = stft (X, WIN_SIZE, INC) +//Y = stft (X, WIN_SIZE, INC, NUM_COEF) +//Y = stft (X, WIN_SIZE, INC, NUM_COEF, WIN_TYPE) +//[Y,C] = stft (X) +//[Y,C] = stft (X, WIN_SIZE) +//[Y,C] = stft (X, WIN_SIZE, INC) +//[Y,C] = stft (X, WIN_SIZE, INC, NUM_COEF) +//[Y,C] = stft (X, WIN_SIZE, INC, NUM_COEF, WIN_TYPE) +//Parameters +//X: Real scalar or vector +//WIN_SIZE: Size of the window used +//INC: Increment +//WIN_TYPE: Type of window +//Description +//Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points. +// +//Before computing the Fourier transform, one of the following windows is applied: +// +//"hanning" -> win_type = 1 +// +//"hamming" -> win_type = 2 +// +//"rectangle" -> win_type = 3 +// +//The window names can be passed as strings or by the WIN_TYPE number. +// +//The following defaults are used for unspecified arguments:WIN_SIZE= 80, INC = 24, NUM_COEF = 64, and WIN_TYPE = 1. +// +//Y = stft (X, ...)' returns the absolute values of the Fourier coefficients according to the NUM_COEF positive frequencies. +// +//'[Y, C] = stft (x, ...)' returns the entire STFT-matrix Y and a 3-element vector C containing the window size, increment, and window type, which is needed by the 'synthesis' function. funcprot(0); lhs= argn(1); diff --git a/macros/synthesis.sci b/macros/synthesis.sci index e787c86..7224686 100644 --- a/macros/synthesis.sci +++ b/macros/synthesis.sci @@ -1,5 +1,14 @@ function x= synthesis(Y,C) - +//Compute a signal from its short-time Fourier transform +//Calling Sequence +//X= synthesis(Y,C) +//Parameters +//Y: Shirt-time fourier transform +//C: 3-element vector C specifying window size, increment, window type. +//Description +//Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type. +//The values Y and C can be derived by +//[Y, C] = stft (X , ...) funcprot(0); lhs= argn(1); rhs= argn(2); diff --git a/macros/tfe.sci b/macros/tfe.sci new file mode 100644 index 0000000..5acc391 --- /dev/null +++ b/macros/tfe.sci @@ -0,0 +1,27 @@ +function [Pxx,freqs] = tfe(x,y,Nfft,Fs,win,overlap,ran,plot_type,detrends) +//Estimate transfer function of system with input "x" and output "y". Use the Welch (1967) periodogram/FFT method. +//Calling Sequence +// [Pxx,freq] = tfe(x,y,Nfft,Fs,window,overlap,range,plot_type,detrend) +//Parameters +//x: [non-empty vector] system-input time-series data +//y: [non-empty vector] system-output time-series data +//win:[real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument. +//overlap:[real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 . +//Nfft:[integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently. +//Fs:[real scalar] sampling frequency (Hertz); default=1.0 +//range:'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. 'whole', 'twosided' : frequency range of the spectrum is-Fs/2 to Fs/2, with negative frequenciesstored in "wrap around" order after the positivefrequencies; e.g. frequencies for a 10-point 'twosided'spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'. +//plot_type: 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db': specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. +//detrends:'no-strip', 'none' -- do NOT remove mean value from the data'short', 'mean' -- remove the mean value of each segment from each segment of the data. 'linear',-- remove linear trend from each segment of the data.'long-mean'-- remove the mean value from the data before splitting it into segments. This is the default. +//Description +//Estimate transfer function of system with input "x" and output "y". Use the Welch (1967) periodogram/FFT method. + funcprot(0); + rhs= argn(2); + lhs= argn(1); + if(rhs < 10 | rhs > 10) + error("Wrong number of input arguments"); + end + select(rhs) + case 10 then + [Pxx,freqs] = callOctave("tfe",x,y,Nfft,Fs,win,overlap,ran,plot_type,detrends); + end +endfunction
\ No newline at end of file diff --git a/macros/unwrap2.sci b/macros/unwrap2.sci new file mode 100644 index 0000000..b8ea9de --- /dev/null +++ b/macros/unwrap2.sci @@ -0,0 +1,35 @@ +function Y = unwrap2 (X, TOL, DIM) +//Unwrap radian phases by adding or subtracting multiples of 2*pi. +//Calling Sequence +//B = unwrap(X) +//B = unwrap(X, TOL) +//B = unwrap(X, TOL, DIM) +//Parameters +//Description +//This function unwraps radian phases by adding or subtracting multiples of 2*pi as appropriate to remove jumps greater than TOL. +// +// TOL defaults to pi. +// +//Unwrap will work along the dimension DIM. If DIM is unspecified it defaults to the first non-singleton dimension. +//Examples +//unwrap2([1,2,3]) +//ans = +// 1. 2. 3. +funcprot(0); +lhs = argn(1); +rhs = argn(2); +if (rhs < 1 | rhs > 3) +error("Wrong number of input arguments."); +end + +select(rhs) + + case 1 then + Y = callOctave("unwrap",X); + case 2 then + Y = callOctave("unwrap",X,TOL); + case 3 then + Y = callOctave("unwrap",X,TOL,DIM); + end + +endfunction diff --git a/macros/xcorr2.sci b/macros/xcorr2.sci index e73f00f..688dc3a 100644 --- a/macros/xcorr2.sci +++ b/macros/xcorr2.sci @@ -4,12 +4,10 @@ function c = xcorr2 (a, b, biasflag) //c = xcorr2 (a) //c = xcorr2 (a, b) //c = xcorr2 (a, b, biasflag) - //Parameters //a: //b: //biasflag: - //Description //This is an Octave function. @@ -21,16 +19,16 @@ funcprot(0); rhs = argn(2) if(rhs<1 | rhs>3) -error("Wrong number of input arguments.") +error("Wrong number of input arguments."); end select(rhs) case 1 then - c = callOctave("xcorr2",a) + c = callOctave("xcorr2",a); case 2 then - c = callOctave("xcorr2",a,b) + c = callOctave("xcorr2",a,b); case 3 then - c = callOctave("xcorr2",a,b,biasflag) - end + c = callOctave("xcorr2",a,b,biasflag); + end; endfunction diff --git a/macros/xcov1.sci b/macros/xcov1.sci index 4c1f37e..b0bff93 100644 --- a/macros/xcov1.sci +++ b/macros/xcov1.sci @@ -1,4 +1,22 @@ function [R,lag] = xcov1(X, Y, biasflag) +// Compute covariance at various lags [=correlation(x-mean(x),y-mean(y))]. +//Calling Sequence +//[R, lag] = xcov (X) +//... = xcov (X, Y) +//... = xcov (..., maxlag) +//... = xcov (..., scale) +//Parameters +//X: Input vector +//Y: if specified, compute cross-covariance between X and Y, otherwise compute autocovariance of X. +//maxlag: is specified, use lag range [-maxlag:maxlag], otherwise use range [-n+1:n-1]. +//scale: +// 'biased': for covariance=raw/N, +// 'unbiased': for covariance=raw/(N-|lag|), +// 'coeff': for covariance=raw/(covariance at lag 0), +// 'none': for covariance=raw +// 'none': is the default. +//Description +//Compute covariance at various lags [=correlation(x-mean(x),y-mean(y))]. Returns the covariance for each lag in the range, plus an optional vector of lags. funcprot(0); rhs = argn(2) diff --git a/macros/yulewalker.sci b/macros/yulewalker.sci index ebcb8aa..40fcadb 100644 --- a/macros/yulewalker.sci +++ b/macros/yulewalker.sci @@ -1,5 +1,13 @@ function [A,V]= yulewalker(C) - +// Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'. +//Calling Sequence +//A = yulewalker(C) +//[A,V]= yulewalker(C) +//Parameters +//C: Autocovariances +//Description +//Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'. +//Returns the AR coefficients, A, and the variance of white noise, V. funcprot(0); lhs=argn(1); rhs= argn(2); |