diff options
author | bgtushar | 2017-11-30 14:54:09 +0530 |
---|---|---|
committer | GitHub | 2017-11-30 14:54:09 +0530 |
commit | 99b498fb0cedd8560d18f032a4cb1fcae0c1fadb (patch) | |
tree | 7dc4d248208dd3ea7dac6e4ffb056f9b16a601eb | |
parent | 14d0ad8d846d12b3c82b0b5bc4ffd4d1360ec288 (diff) | |
parent | 9d18f39d1775acd7f96e2388b186bb15068ff910 (diff) | |
download | FOSSEE-Signal-Processing-Toolbox-99b498fb0cedd8560d18f032a4cb1fcae0c1fadb.tar.gz FOSSEE-Signal-Processing-Toolbox-99b498fb0cedd8560d18f032a4cb1fcae0c1fadb.tar.bz2 FOSSEE-Signal-Processing-Toolbox-99b498fb0cedd8560d18f032a4cb1fcae0c1fadb.zip |
Merge pull request #8 from Brijeshcr/master
Added new functions
48 files changed, 2366 insertions, 408 deletions
diff --git a/help/en_US/arch_rnd.xml b/help/en_US/arch_rnd.xml new file mode 100644 index 0000000..4692e05 --- /dev/null +++ b/help/en_US/arch_rnd.xml @@ -0,0 +1,74 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from arch_rnd.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="arch_rnd" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>arch_rnd</refname> + <refpurpose>Simulate an ARCH sequence of length t with AR coefficients b and CH coefficients a.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + arch_rnd (a, b, t) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>a:</term> + <listitem><para> CH coefficients</para></listitem></varlistentry> + <varlistentry><term>b:</term> + <listitem><para> AR coefficients</para></listitem></varlistentry> + <varlistentry><term>t:</term> + <listitem><para> Length of ARCH sequence</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +It Simulates an ARCH sequence of length t with AR coefficients b and CH coefficients a. +The result y(t) follows the model + </para> + <para> +y(t) = b(1) + b(2) * y(t-1) + … + b(lb) * y(t-lb+1) + e(t), +where e(t), given y up to time t-1, is N(0, h(t)), with + </para> + <para> +h(t) = a(1) + a(2) * e(t-1)^2 + … + a(la) * e(t-la+1)^2 +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +a = [1 2 3 4 5]; +b = [7 8 9 10]; +arch_rnd (a, b, t) +ans = + +6.1037e+00 +5.7294e+01 +5.7390e+02 +6.3063e+03 +6.8695e+04 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/arma_rnd.xml b/help/en_US/arma_rnd.xml new file mode 100644 index 0000000..fdf1c26 --- /dev/null +++ b/help/en_US/arma_rnd.xml @@ -0,0 +1,82 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from arma_rnd.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="arma_rnd" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>arma_rnd</refname> + <refpurpose>Return a simulation of the ARMA model.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + arma_rnd (a, b, v, t, n) + arma_rnd (a, b, v, t) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>a:</term> + <listitem><para> vector</para></listitem></varlistentry> + <varlistentry><term>b:</term> + <listitem><para> vector</para></listitem></varlistentry> + <varlistentry><term>v:</term> + <listitem><para> Variance</para></listitem></varlistentry> + <varlistentry><term>t:</term> + <listitem><para> Length of output vector</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> Number of dummy x(i) used for initialization</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +The ARMA model is defined by + </para> + <para> +x(n) = a(1) * x(n-1) + … + a(k) * x(n-k) ++ e(n) + b(1) * e(n-1) + … + b(l) * e(n-l) +in which k is the length of vector a, l is the length of vector b and e is Gaussian white noise with variance v. The function returns a vector of length t. + </para> + <para> +The optional parameter n gives the number of dummy x(i) used for initialization, i.e., a sequence of length t+n is generated and x(n+1:t+n) is returned. If n is omitted, n = 100 is used. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +a = [1 2 3 4 5]; +b = [7; 8; 9; 10; 11]; +v = 10; +t = 5; +n = 100; +arma_rnd (a, b, v, t, n) +ans = + +-1.6176e+05 +-4.1663e+05 +-1.0732e+06 +-2.7648e+06 +-7.1221e+06 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/cl2bp.xml b/help/en_US/cl2bp.xml new file mode 100644 index 0000000..d91c257 --- /dev/null +++ b/help/en_US/cl2bp.xml @@ -0,0 +1,75 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from cl2bp.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="cl2bp" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>cl2bp</refname> + <refpurpose>Constrained L2 bandpass FIR filter design.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + h = cl2bp (m, w1, w2, up, lo, gridsize) + h = cl2bp (m, w1, w2, up, lo) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>m:</term> + <listitem><para> degree of cosine polynomial, i.e. the number of output coefficients will be m*2+1</para></listitem></varlistentry> + <varlistentry><term>w1 and w2:</term> + <listitem><para> bandpass filter cutoffs in the range 0 <= w1 < w2 <= pi, where pi is the Nyquist frequency</para></listitem></varlistentry> + <varlistentry><term>up:</term> + <listitem><para> vector of 3 upper bounds for [stopband1, passband, stopband2]</para></listitem></varlistentry> + <varlistentry><term>lo:</term> + <listitem><para> vector of 3 lower bounds for [stopband1, passband, stopband2]</para></listitem></varlistentry> + <varlistentry><term>gridsize:</term> + <listitem><para> search grid size; larger values may improve accuracy, but greatly increase calculation time.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Constrained L2 bandpass FIR filter design. Compared to remez, it offers implicit specification of transition bands, a higher likelihood of convergence, and an error criterion combining features of both L2 and Chebyshev approaches. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +h = cl2bp(5, 0.3*pi, 0.6*pi, [0.02, 1.02, 0.02], [-0.02, 0.98, -0.02], 2^11) +h = + +0.038311 +0.082289 +-0.086163 +-0.226006 +0.047851 +0.307434 +0.047851 +-0.226006 +-0.086163 +0.082289 +0.038311 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/cplxreal.xml b/help/en_US/cplxreal.xml index f5e5ed5..e33c102 100644 --- a/help/en_US/cplxreal.xml +++ b/help/en_US/cplxreal.xml @@ -53,4 +53,14 @@ Every complex element of z is expected to have a complex-conjugate elsewhere in If the magnitude of the imaginary part of an element is less than the thresh, it is declared as real. </para> </refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[zc, zr] = cplxreal([1 2 3+i 4 3-i 5]) +zc = 3 + 1i +zr = +1 2 4 5 + ]]></programlisting> +</refsection> </refentry> diff --git a/help/en_US/fft1.xml b/help/en_US/fft1.xml new file mode 100644 index 0000000..2989876 --- /dev/null +++ b/help/en_US/fft1.xml @@ -0,0 +1,74 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fft1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fft1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fft1</refname> + <refpurpose>Calculates the discrete Fourier transform of a matrix using Fast Fourier Transform algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + fft (x, n, dim) + fft (x, n) + fft (x) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> input matrix</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> Specifies the number of elements of x to be used</para></listitem></varlistentry> + <varlistentry><term>dim:</term> + <listitem><para> Specifies the dimention of the matrix along which the FFT is performed</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +The FFT is calculated along the first non-singleton dimension of the array. Thus, FFT is computed for each column of x. + </para> + <para> +n is an integer specifying the number of elements of x to use. If n is larger than dimention along. which the FFT is calculated, then x is resized and padded with zeros. +Similarly, if n is smaller, then x is truncated. + </para> + <para> +dim is an integer specifying the dimension of the matrix along which the FFT is performed. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +x = [1 2 3; 4 5 6; 7 8 9] +n = 3 +dim = 2 +fft1 (x, n, dim) +ans = + +6.0000 + 0.0000i -1.5000 + 0.8660i -1.5000 - 0.8660i +15.0000 + 0.0000i -1.5000 + 0.8660i -1.5000 - 0.8660i +24.0000 + 0.0000i -1.5000 + 0.8660i -1.5000 - 0.8660i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fft21.xml b/help/en_US/fft21.xml new file mode 100644 index 0000000..eccf719 --- /dev/null +++ b/help/en_US/fft21.xml @@ -0,0 +1,68 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fft21.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fft21" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fft21</refname> + <refpurpose>Calculates the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + fft2 (A, m, n) + fft2 (A) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>A:</term> + <listitem><para> input matrix</para></listitem></varlistentry> + <varlistentry><term>m:</term> + <listitem><para> number of rows of A to be used</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> number of columns of A to be used</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +It performs two-dimentional FFT on the matrix A. m and n may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros. +If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +x = [1 2 3; 4 5 6; 7 8 9] +m = 4 +n = 4 +fft21 (A, m, n) +ans = + +45 + 0i -6 - 15i 15 + 0i -6 + 15i +-18 - 15i -5 + 8i -6 - 5i 5 - 4i +15 + 0i -2 - 5i 5 + 0i -2 + 5i +-18 + 15i 5 + 4i -6 + 5i -5 - 8i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/fftshift1.xml b/help/en_US/fftshift1.xml index 8ce7eab..abf1de1 100644 --- a/help/en_US/fftshift1.xml +++ b/help/en_US/fftshift1.xml @@ -17,7 +17,7 @@ <refnamediv> <refname>fftshift1</refname> - <refpurpose>Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.</refpurpose> + <refpurpose>Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix.</refpurpose> </refnamediv> @@ -43,10 +43,10 @@ <title>Description</title> <para> This is an Octave function. -Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix. +Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix. </para> <para> -If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift1 (fft (X))' corresponds to frequencies +If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift1 (fft1 (X))' corresponds to frequencies </para> <para> f = [ -(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df ] diff --git a/help/en_US/fftw1.xml b/help/en_US/fftw1.xml new file mode 100644 index 0000000..482f5df --- /dev/null +++ b/help/en_US/fftw1.xml @@ -0,0 +1,94 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fftw1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fftw1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fftw1</refname> + <refpurpose>Manage FFTW wisdom data.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + method = fftw ("planner") + fftw ("planner", method) + wisdom = fftw ("dwisdom") + fftw ("dwisdom", wisdom) + fftw ("threads", nthreads) + nthreads = fftw ("threads") + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Wisdom data can be used to significantly accelerate the calculation of the FFTs, but implies an initial cost in its calculation. When the FFTW libraries are initialized, they read a system wide wisdom +file (typically in /etc/fftw/wisdom), allowing wisdom to be shared between applications other than Octave. Alternatively, the fftw function can be used to import wisdom. For example, + </para> + <para> +wisdom = fftw ("dwisdom") +will save the existing wisdom used by Octave to the string wisdom. This string can then be saved to a file and restored using the save and load commands respectively. This existing wisdom can be re +imported as follows + </para> + <para> +fftw ("dwisdom", wisdom) +If wisdom is an empty string, then the wisdom used is cleared. + </para> + <para> +During the calculation of Fourier transforms further wisdom is generated. The fashion in which this wisdom is generated is also controlled by the fftw function. There are five different manners in which +the wisdom can be treated: + </para> + <para> +"estimate" +Specifies that no run-time measurement of the optimal means of calculating a particular is performed, and a simple heuristic is used to pick a (probably sub-optimal) plan. The advantage of this method +is that there is little or no overhead in the generation of the plan, which is appropriate for a Fourier transform that will be calculated once. + </para> + <para> +"measure" +In this case a range of algorithms to perform the transform is considered and the best is selected based on their execution time. + </para> + <para> +"patient" +Similar to "measure", but a wider range of algorithms is considered. + </para> + <para> +"exhaustive" +Like "measure", but all possible algorithms that may be used to treat the transform are considered. + </para> + <para> +"hybrid" +As run-time measurement of the algorithm can be expensive, this is a compromise where "measure" is used for transforms up to the size of 8192 and beyond that the "estimate" method is used. + </para> + <para> +The default method is "estimate". The current method can be queried with + </para> + <para> +method = fftw ("planner") +or set by using + </para> + <para> +fftw ("planner", method) +</para> +</refsection> +</refentry> diff --git a/help/en_US/ifft1.xml b/help/en_US/ifft1.xml new file mode 100644 index 0000000..9d92e8e --- /dev/null +++ b/help/en_US/ifft1.xml @@ -0,0 +1,81 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from ifft1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="ifft1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>ifft1</refname> + <refpurpose>Calculates the inverse discrete Fourier transform of a matrix using Fast Fourier Transform algorithm.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + ifft (x, n, dim) + ifft (x, n) + ifft (x) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> input matrix</para></listitem></varlistentry> + <varlistentry><term>n:</term> + <listitem><para> Specifies the number of elements of x to be used</para></listitem></varlistentry> + <varlistentry><term>dim:</term> + <listitem><para> Specifies the dimention of the matrix along which the inverse FFT is performed</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +</para> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +The inverse FFT is calculated along the first non-singleton dimension of the array. Thus, inverse FFT is computed for each column of x. + </para> + <para> +n is an integer specifying the number of elements of x to use. If n is larger than dimention along. which the inverse FFT is calculated, then x is resized and padded with zeros. +Similarly, if n is smaller, then x is truncated. + </para> + <para> +dim is an integer specifying the dimension of the matrix along which the inverse FFT is performed. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +x = [1 2 3; 4 5 6; 7 8 9] +n = 3 +dim = 2 +ifft1 (x, n, dim) +ans = + +2.00000 + 0.00000i -0.50000 - 0.28868i -0.50000 + 0.28868i +5.00000 + 0.00000i -0.50000 - 0.28868i -0.50000 + 0.28868i +8.00000 + 0.00000i -0.50000 - 0.28868i -0.50000 + 0.28868i + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/invfreqs.xml b/help/en_US/invfreqs.xml new file mode 100644 index 0000000..a35a2d6 --- /dev/null +++ b/help/en_US/invfreqs.xml @@ -0,0 +1,78 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from invfreqs.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="invfreqs" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>invfreqs</refname> + <refpurpose>Fit filter B(s)/A(s)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [B,A,C] = invfreqs(H,F,nB,nA,W,iter,tol,trace) + [B,A,C] = invfreqs(H,F,nB,nA,W) + [B,A,C] = invfreqs(H,F,nB,nA) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>H:</term> + <listitem><para> desired complex frequency response.</para></listitem></varlistentry> + <varlistentry><term>F:</term> + <listitem><para> frequency (must be same length as H).</para></listitem></varlistentry> + <varlistentry><term>nB:</term> + <listitem><para> order of the numerator polynomial B.</para></listitem></varlistentry> + <varlistentry><term>nA:</term> + <listitem><para> order of the denominator polynomial A.</para></listitem></varlistentry> + <varlistentry><term>W:</term> + <listitem><para> vector of weights (must be same length as F).</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Fit filter B(s)/A(s)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +Optionally, the fit-errors can be weighted vs frequency according to the weights W. +Note: all the guts are in invfreq.m +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +B = [1/2 1]; +A = [1 1]; +w = linspace(0,4,128); +H = freqs(B,A,w); +[Bh,Ah, C] = invfreqs(H,w,1,1); +Bh = + +0.50000 1.00000 + +Ah = + +1.0000 1.0000 + +C = -3.0964e-15 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/invfreqz.xml b/help/en_US/invfreqz.xml new file mode 100644 index 0000000..188595a --- /dev/null +++ b/help/en_US/invfreqz.xml @@ -0,0 +1,76 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from invfreqz.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="invfreqz" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>invfreqz</refname> + <refpurpose>Fit filter B(z)/A(z)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [B,A,C] = invfreqz(H,F,nB,nA,W,iter,tol,trace) + [B,A,C] = invfreqz(H,F,nB,nA,W) + [B,A,C] = invfreqz(H,F,nB,nA) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>H:</term> + <listitem><para> desired complex frequency response.</para></listitem></varlistentry> + <varlistentry><term>F:</term> + <listitem><para> frequency (must be same length as H).</para></listitem></varlistentry> + <varlistentry><term>nB:</term> + <listitem><para> order of the numerator polynomial B.</para></listitem></varlistentry> + <varlistentry><term>nA:</term> + <listitem><para> order of the denominator polynomial A.</para></listitem></varlistentry> + <varlistentry><term>W:</term> + <listitem><para> vector of weights (must be same length as F).</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Fit filter B(z)/A(z)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +Optionally, the fit-errors can be weighted vs frequency according to the weights W. +Note: all the guts are in invfreq.m +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[B,A] = butter(4,1/4); +[H,F] = freqz(B,A); +[Bh,Ah,C] = invfreq(H,F,4,4) +Bh = + +0.010209 0.040838 0.061257 0.040838 0.010209 + +Ah = + +1.00000 -1.96843 1.73586 -0.72447 0.12039 + +C = -7.7065e-15 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/kaiserord.xml b/help/en_US/kaiserord.xml new file mode 100644 index 0000000..8a76cf7 --- /dev/null +++ b/help/en_US/kaiserord.xml @@ -0,0 +1,84 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from kaiserord.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="kaiserord" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>kaiserord</refname> + <refpurpose>Return the parameters needed to produce a filter of the desired specification from a Kaiser window.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [n, Wn, beta, ftype] = kaiserord (f, m, dev, fs) + […] = kaiserord (f, m, dev, fs) + […] = kaiserord (f, m, dev) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>f:</term> + <listitem><para> Pairs of frequency band edges.</para></listitem></varlistentry> + <varlistentry><term>m:</term> + <listitem><para> Magnitude response for each band.</para></listitem></varlistentry> + <varlistentry><term>dev:</term> + <listitem><para> Deviation of the filter.</para></listitem></varlistentry> + <varlistentry><term>fs:</term> + <listitem><para> Sampling rate.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +The vector f contains pairs of frequency band edges in the range [0,1]. The vector m specifies the magnitude response for each band. The values of m must be zero for all stop bands and must have the +same magnitude for all pass bands. The deviation of the filter dev can be specified as a scalar or a vector of the same length as m. The optional sampling rate fs can be used to indicate that f is in +Hz in the range [0,fs/2]. + </para> + <para> +The returned value n is the required order of the filter (the length of the filter minus 1). The vector Wn contains the band edges of the filter suitable for passing to fir1. The value beta is the +parameter of the Kaiser window of length n+1 to shape the filter. The string ftype contains the type of filter to specify to fir1. + </para> + <para> +The Kaiser window parameters n and beta are computed from the relation between ripple (A=-20*log10(dev)) and transition width (dw in radians) discovered empirically by Kaiser: + </para> + <para> + </para> + <para> +/ 0.1102(A-8.7) A > 50 +beta = | 0.5842(A-21)^0.4 + 0.07886(A-21) 21 <= A <= 50 +\ 0.0 A < 21 + </para> + <para> +n = (A-8)/(2.285 dw) +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[n, w, beta, ftype] = kaiserord ([1000, 1200], [1, 0], [0.05, 0.05], 11025) +n = 1 +w = 1100 +beta = 1.5099 +ftype = low + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/master_help.xml b/help/en_US/master_help.xml index 9ff7294..830e441 100644 --- a/help/en_US/master_help.xml +++ b/help/en_US/master_help.xml @@ -1,102 +1,89 @@ <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE book [ <!--Begin Entities--> -<!ENTITY a231328952124a7e187905e71aaf9cee0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ac2poly.xml"> -<!ENTITY acc27042e738d175d1131be40ac8443e4 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ac2rc.xml"> -<!ENTITY a00c7c9f2a0021ff13869dce3b90df38c SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/arParEst.xml"> +<!ENTITY a80dc2d1be7f85c4fdeda3627eeaeba5b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/arch_rnd.xml"> +<!ENTITY aa8ae4694cb3e88d729d68b31dffb8be2 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/arma_rnd.xml"> +<!ENTITY a8b11798eda410c3ebbbdf55e6d9f64c6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/besselap.xml"> +<!ENTITY a3090cfb96d2431a77d3573f5c22eba2c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/buttap.xml"> +<!ENTITY aad06f15b8c56fd06a63ed4c93a7b17de SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cceps.xml"> +<!ENTITY aae1630f64e7d6887cfb5f4801b70358c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb.xml"> +<!ENTITY aa2b1694a7963cd81b95b1b3d497d01c9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb1ap.xml"> +<!ENTITY af4a3555ae3fc9828d4f5bcfe3c082bae SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb2ap.xml"> +<!ENTITY a05e673d1d3c435a4f72f7a803fac3c4c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cl2bp.xml"> +<!ENTITY a11375970432ad3165248b0408d73a6f9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/cplxreal.xml"> +<!ENTITY ae086fe3d5e719b7163fe6bbe6379a30b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/czt.xml"> +<!ENTITY ac6f45dfd4ee34be9be8deaf068a03d3a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/dst1.xml"> +<!ENTITY a33f68328b4f96f612655c918690757cb SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellipap.xml"> +<!ENTITY aac9ca99701b69583c37e4f90cc6f2b31 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft1.xml"> +<!ENTITY a3192e9ff3cd44b40b7e9390bfc464f1f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft21.xml"> +<!ENTITY acb27ed052fb6279db1c0a646bd336d1f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fftw1.xml"> +<!ENTITY ae5182eb8e46dfc6f361e8273d1e85e8e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fht.xml"> +<!ENTITY a097842abc76805ff3b2f72a2c9c8205c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/freqs.xml"> +<!ENTITY aeca2a7e1b17564f24ae127e8d114f3d8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwht.xml"> +<!ENTITY a4c00e2caafdf45e6fbec22940c767231 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/hilbert1.xml"> +<!ENTITY ae59ce3d617ae3e103df7d517bac2744f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/hurst.xml"> +<!ENTITY a57e47f4f26e6dd49cc38dd803fa42580 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct1.xml"> +<!ENTITY a59d4bef3e5e6c1d6031b4045141c20e2 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct2.xml"> +<!ENTITY a0176b20a1535e927094297f2d6b381fb SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/idst1.xml"> +<!ENTITY aabb5515641d926736c17451d536a457e SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifft1.xml"> +<!ENTITY a330e5720762d9a372a40e1ee1be0ee8b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifft21.xml"> +<!ENTITY a0d171476d96c87a3de7983184b9176d0 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifht.xml"> +<!ENTITY abe76e908f76eb5c6710cc13f1acf2bd6 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifwht.xml"> +<!ENTITY ac7930d64830c9666cfb944d836f4d775 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreq.xml"> +<!ENTITY abaa22bc1877bc9d4131223d13b402b60 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreqs.xml"> +<!ENTITY a125fdeea0240f72f7ba6ec95fc53fad0 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreqz.xml"> +<!ENTITY a060d37eea26c9ff3b60ac48f121b2205 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/kaiserord.xml"> +<!ENTITY a7c279b72cef3871697c360725d1aca0f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/ncauer.xml"> +<!ENTITY af859fa6921261df3081e38479f8231eb SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pburg.xml"> +<!ENTITY a66b94edea7efc8ac92b9ea88227e8c4a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pei_tseng_notch.xml"> +<!ENTITY ab09b38565f83974426d349f1330ee626 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/pyulear.xml"> +<!ENTITY ab6965276d6abc03dba25337d98f06a9b SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/qp_kaiser.xml"> +<!ENTITY aba910d84a7b8dc5c58261362595d6a6f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/rceps.xml"> +<!ENTITY a992cb0804ac63bcee0241a7d3f625ac9 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/remez1.xml"> +<!ENTITY a61a6017541d7986bc2fe01dea58f861d SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sftrans.xml"> +<!ENTITY a1cac6df59eacdeef9bebfaf8fdd4322a SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sigmoid_train.xml"> +<!ENTITY a88faf3b43623f226cdade19a21c3b6cf SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinetone.xml"> +<!ENTITY af4f643c0bd50a55c10e28d7089215e30 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinewave.xml"> +<!ENTITY adbd325d6129658aef1a1c44ebdfaf634 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_adf.xml"> +<!ENTITY a6e52208f7cf5935ac4b2dbbaf19a6a8f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_xdf.xml"> +<!ENTITY a3a436e475ddcbb6edb82e15c9ad4f910 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/spencer.xml"> +<!ENTITY a286a5169d98da3bb93e5e169fc582493 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/stft.xml"> +<!ENTITY a61c1b23c2b8ad57c50ce79acde50c677 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/synthesis.xml"> +<!ENTITY a908bb8057a00d2c709d46a3911b0d4d8 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/tfestimate.xml"> +<!ENTITY aca35ca9bbd1eb7284507f50f56a1947f SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/wconv.xml"> +<!ENTITY ad226196ce2e896f6d2052cc004cac236 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcorr1.xml"> +<!ENTITY a8a74af8f737940c9fe7be0732e87ed26 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcov1.xml"> +<!ENTITY a63ca6d1cb168f3cdb2f3f92defdb7694 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/yulewalker.xml"> +<!ENTITY a6852d675894772d70b92036fdc80543c SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2ss.xml"> +<!ENTITY a9c59e841b79fd8ce5d6e2521ae6b2347 SYSTEM "/home/brijeshcr/Documents/Fossee_Toolboxes/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2tf.xml"> <!ENTITY a85e6512c560e0bf936c3beeaa098c6c9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ar_psd.xml"> -<!ENTITY a2801dc954ec6ac2e1c314367aab7316b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/arburg.xml"> <!ENTITY a1495e32bc54c2e2975785e8e2e4521bd SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/arch_test.xml"> -<!ENTITY aa86636858e7127f17b93747fc8f3ec30 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/arcov.xml"> -<!ENTITY a2804cc9a113729444d60d8cf3c14b554 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/armcov.xml"> -<!ENTITY a78af20f681c48f8ec298b379b34418b7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/aryule.xml"> -<!ENTITY af1b518d74e5b9c0251ecb1df257eb407 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/barthannwin.xml"> -<!ENTITY af8a337c857d4b373e49c0032acb1370f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/bartlett.xml"> <!ENTITY a8db037e6c34a1ac0f7db27577e08e15d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/besselap.xml"> -<!ENTITY a31f48c823b3b36a8c44e96ff54eaf66a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/besself.xml"> <!ENTITY a1f0975c78250aac81c6d5a79d8c93eab SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/bilinear.xml"> -<!ENTITY a4965260600d5ae3055dc940551b4155a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/bitrevorder.xml"> -<!ENTITY a203e8f0f36fcdb6d7dab204312a41134 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/blackman.xml"> -<!ENTITY a33562ce8ee2b64f5e49f771f94e64714 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/blackmanharris.xml"> -<!ENTITY a2ead104a959d0030deacd8bfd726d641 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/blackmannuttall.xml"> -<!ENTITY affed76d132b047f7e7dd7feaf7460b96 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/bohmanwin.xml"> -<!ENTITY a9a73fbe4c732d8d281a15b9c56b66cd7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/boxcar.xml"> -<!ENTITY af063a7c3d52b3fc249eccfea5477233a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/buffer.xml"> <!ENTITY a6b85a8141239aa12da5fd722e12764c5 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/buttap.xml"> -<!ENTITY ac13ce08d83a0b050bbcd34097be69474 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/butter.xml"> -<!ENTITY a3ac1d95c0377fbd5021c9ab3878d3381 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/buttord.xml"> <!ENTITY a8bfbf0158cec14ad1852c16a1bcd1a9f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cceps.xml"> -<!ENTITY aad687051b3ff18c103250462607b8bfe SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cconv.xml"> -<!ENTITY ae12b60324a0fd39a6eaeaa29154462d3 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cell2sos.xml"> <!ENTITY a952ffa1c6ec05774d717ea1a51c966c7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb.xml"> <!ENTITY a63809fd4817619e419316a6fb51f2478 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb1ap.xml"> -<!ENTITY a67189797ee7307d2f12d2d9db1429d16 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb1ord.xml"> <!ENTITY a6f811f8e27e331fa279fc0462a6dd852 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb2ap.xml"> -<!ENTITY af57064694f5b9424a2fb945bab08663a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheb2ord.xml"> -<!ENTITY a788630ff50c6129a3217a8b029fdb706 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/chebwin.xml"> -<!ENTITY ad67eb98c7a334e2ccd2584c52d1f7490 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheby1.xml"> -<!ENTITY a9aaa53086cfad7fff7a9568a895c584e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cheby2.xml"> -<!ENTITY a80fd0493bf42ae683bb78ef95ecc8ff1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/check.xml"> -<!ENTITY a1dc032779f7ba8e8f69e8f79dfb144d5 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/chirp.xml"> -<!ENTITY a5bf1548e6f5419396992c7e5fee10e44 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/clustersegment.xml"> -<!ENTITY a675cd787aff166461d9e9da55d591875 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cmorwavf.xml"> <!ENTITY a2b41713030e0a16e3e381cc96ff62544 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cohere.xml"> -<!ENTITY adc56a73851265426ed0c3db40f3a0d2e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/convmtx.xml"> -<!ENTITY a3d40cac540363daecb58818938d2b1d3 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/corrmtx.xml"> <!ENTITY ad2840257a4ded4da25428645e8a8fd22 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cplxreal.xml"> -<!ENTITY abaaa2a634a57347cfaeb3f75cc42b298 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cummax.xml"> -<!ENTITY ae8d01defeace3e366cfdce71da71d5e2 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/cummin.xml"> <!ENTITY a76e2baa7f20cd4d2b517c7f65f4b0a87 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/czt.xml"> -<!ENTITY a438b318f3a65f8e10cb292c16ee48d3d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/db.xml"> -<!ENTITY a012dc78292d46d1a6bfdd411607796ae SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/db2pow.xml"> -<!ENTITY a4c9381ac38659e2e9ccdf89e9aec08f9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/dctmtx.xml"> -<!ENTITY a732f6e560fa62dcfe2137f94ce0b812b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/decimate.xml"> <!ENTITY aead61bf67b6895372794be69a80b5ab9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/detrend1.xml"> -<!ENTITY a8e9030fad0ea16388695b20a07e04334 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/dftmtx.xml"> <!ENTITY a1d56d414b955dad7a64ae7c13171931e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/diffpara.xml"> -<!ENTITY a3ffbb42a185eaf6b62029b6efc883d6b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/diric.xml"> -<!ENTITY ac93a3534190eae2db767de3935ad4fbc SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/downsample.xml"> <!ENTITY afe6460b06ca50c9c2d156ea6806d2ed9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/dst1.xml"> <!ENTITY a227944d1935a789cec8341413d58151d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/durbinlevinson.xml"> -<!ENTITY a52aa309fac8ef71cd8d143ac51969fe0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/dutycycle.xml"> -<!ENTITY aa0ecb21a4fba74cd96dd91d64d4f13ef SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellip.xml"> <!ENTITY a54ce5c2d68eb85b370486a8657432e59 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellipap.xml"> -<!ENTITY ae7e31ef8153e0b43af5b7d3b54f281b8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ellipord.xml"> -<!ENTITY a0d95063280ebe0c559bd51e94d6809cb SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/enbw.xml"> -<!ENTITY a528ea74a7c6d6e7453f0a50c2b96a9ee SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/eqtflength.xml"> -<!ENTITY ae0c094a4d283763517f2a9d8dc2d47dd SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/falltime.xml"> <!ENTITY a61dce7ba646ca92aaf5a1ba090aa25e4 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft.xml"> <!ENTITY ad146f651e2b3ae0f2c4548c9d31b9324 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fft2.xml"> -<!ENTITY a093a9f733664f253ef62c57cbfd1f345 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fftfilt.xml"> <!ENTITY ac1d05174ad6903658715873090e2337d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fftshift1.xml"> <!ENTITY ad9f3946f61509aa68a6555cc8e1e89c4 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fht.xml"> -<!ENTITY a0b5dd6bfc7c995741ff59cb1f2e6bd9d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/filternorm.xml"> -<!ENTITY a6f9f6be023cda42def4540ebe4a826ad SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/filtfilt.xml"> -<!ENTITY ab3a31ebfc4f38ef5c568256700871cf9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/filtic.xml"> -<!ENTITY aaadfeefbe7128b3e19dfcf58d9259fba SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/filtord.xml"> -<!ENTITY a73e8c044770a7cfd905f857689a6baa1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/firpmord.xml"> -<!ENTITY a94e89cc06baa492675fb0ba33b84c454 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/firtype.xml"> -<!ENTITY a19950da21e14157b78311a84cf566c31 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/flattopwin.xml"> -<!ENTITY a997024f7f60a0e9b5b06fb25b4549196 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fracshift.xml"> <!ENTITY a36e682243b9d539831279ec2794d4dcf SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fractdiff.xml"> <!ENTITY a60063fcaf779858435eab52d0438f7c0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/freqs.xml"> -<!ENTITY a5b1b81f5a27ba264b58d0ede7bf40d6e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwhm.xml"> -<!ENTITY aaa8fd7d64f02100f0ff4b9f5a601b502 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwhmjlt.xml"> <!ENTITY a6c84bcba9eda7daf35794f2c2b1cfc36 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/fwht.xml"> -<!ENTITY a5a10dacc8f7724140837e716eefea546 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/gauspuls.xml"> -<!ENTITY a241d399410079c666c88bab68b4bd8b6 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/gaussdesign.xml"> -<!ENTITY a6091479f1738a3f05872855ff81f767e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/gaussian.xml"> -<!ENTITY a79d0e19a419a4da0e9852a883c56e875 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/gausswin.xml"> -<!ENTITY acbf561fbe774483d5bdd6bb94f356c92 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/gmonopuls.xml"> -<!ENTITY a829161f2b17c647cab27ce7e4e177861 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/goertzel.xml"> -<!ENTITY a09f64c6e5d7a6e94067ecb6f99796457 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/grpdelay.xml"> <!ENTITY ad615141134f915d2325d00926eea7422 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hamming.xml"> -<!ENTITY a277e25e2845fbbffbb98cb9bd813d43e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hann.xml"> <!ENTITY a350fe0538e119f50421b72fb0177d862 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hanning.xml"> -<!ENTITY a89a8d615b106b54285bf3493164dde99 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/helperHarmonicDistortionAmplifier.xml"> <!ENTITY a5d806f19e64dff92d1430af2e3d36434 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hilbert1.xml"> <!ENTITY a93018e4b205ad1077ed39b70108ab6f5 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/hurst.xml"> -<!ENTITY a564da052a4377e3262d3e2eaaff74169 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/icceps.xml"> <!ENTITY a55af75fd2a9b6cd5cd41835b0a2cc3b9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct1.xml"> <!ENTITY af8c65bd6904096611c2566ec57c5b032 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/idct2.xml"> <!ENTITY a6fd54fa41c0d83b890ecda9094cd757f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/idst1.xml"> @@ -105,151 +92,26 @@ <!ENTITY ac144cb9b3a31dd3325159821e24eac51 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifftshift1.xml"> <!ENTITY a414728f3a3bc742adaead017680e9eb1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifht.xml"> <!ENTITY a2992435e7a3da65808422b5922e44afd SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ifwht.xml"> -<!ENTITY a056e2f09f5221e8999a0fea1c1fa878d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/iirlp2mb.xml"> -<!ENTITY a9142e379fc897ce07ddb4601b5f6eff9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/impinvar.xml"> -<!ENTITY adc184a6cbbaa2bb5ce1233a789ac1f35 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/impz.xml"> -<!ENTITY a05f89038eb00b07e70e0873d8d1dfdbd SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/impzlength.xml"> -<!ENTITY a2fb2ab4d09d36ef1d84d3666c77ea926 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/interp.xml"> -<!ENTITY a3d73ca698d63b8e1aca3d442d62d67c8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/intfilt.xml"> <!ENTITY a17c1049c0e838c40c3d0c6330a1ed18e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/invfreq.xml"> -<!ENTITY a9f42719de3232f6757f8f9645f04d2ba SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/invimpinvar.xml"> -<!ENTITY aa2dde2bdf03f823c2c8bcbe7c32ac6f5 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/is2rc.xml"> -<!ENTITY a1341fabc85cc66d9215f09a3b3389f21 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/isallpass.xml"> -<!ENTITY a9582da81a2996f4949f3a56504ac7af0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/isfir.xml"> -<!ENTITY af06621ea64b7432870e0c9de816a7a3f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/islinphase.xml"> -<!ENTITY aedaf12b58709e4d66d9594c045e7fab9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ismaxphase.xml"> -<!ENTITY a076a06248e94759c2531feb6af82b4b2 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/isminphase.xml"> -<!ENTITY a550cb394018ff7036f3bf7ed85cd894a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/isstable.xml"> -<!ENTITY aadd3778bbb3c69186062e83df88617b6 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/kaiser.xml"> -<!ENTITY ae880c6aad471ddeadec92a73990a8916 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/lar2rc.xml"> -<!ENTITY a3a1de36d214f8b24968c347990a780ca SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/latc2tf.xml"> -<!ENTITY afd0accae740fccac83b6e58da7ad7f67 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/latcfilt.xml"> -<!ENTITY aaff1fbd30d203394a0065360948cb552 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/latcfilt1.xml"> -<!ENTITY a64409832c5b89c298638be3ae481e2db SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/levdown.xml"> -<!ENTITY a94b0fd913cff757ba932421487806ce2 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/levin.xml"> -<!ENTITY a501538e66b60a9dad666d8feebebc808 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/levinson.xml"> -<!ENTITY a2cd55936714d73ab7cfc5b191e1ab310 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/lpc.xml"> -<!ENTITY a5100d9ea14ecae777adf29449f8326bd SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/lsf2poly.xml"> -<!ENTITY a5d96b63e9d96e401c886dc2e59f352ae SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/mag2db.xml"> -<!ENTITY a7eb314d0aac7fe50a8b374d1fe09224a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/marcumq.xml"> -<!ENTITY a5f1fdcf4bd80a0fdc97b1a66dc3d6126 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/medfilt1.xml"> -<!ENTITY aa6381ef62e04401a281532a2b26866e4 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/mexihat.xml"> -<!ENTITY ab54549e25f72917f5984976326446806 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/meyeraux.xml"> -<!ENTITY aad2ae34d6eb1330043839076bfe50370 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/midcross.xml"> -<!ENTITY a2cb9870e7f3797bd8079af0d6bd72c2a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/modulate.xml"> -<!ENTITY a6f84b9f7d14410ce7b79c7e06629063c SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/morlet.xml"> -<!ENTITY ab20a31499c13238dfad5e6a9a47494a8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/movingrms.xml"> <!ENTITY a61d7d15c9f4c0556b04a98e7f4cd299c SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/mscohere.xml"> -<!ENTITY af78d47b6f1d4f40097f16df906159928 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/musicBase.xml"> <!ENTITY a39a1a3343fe803f4afaf048b8d1570f3 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ncauer.xml"> -<!ENTITY a0d9a41d49a4663bd5ae6e17bce7f3f9d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/nnls.xml"> -<!ENTITY ae90b90188af214c9b4bfbfd5186a57e3 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/nuttallwin.xml"> -<!ENTITY ab8ccec6c3405c19a470f1f3ca558ad07 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/parzenwin.xml"> -<!ENTITY a454451daa892c02d56805334a51be93f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pchip.xml"> -<!ENTITY ac1059f65770cbb8f7e8f63040d89272e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pchips.xml"> -<!ENTITY a66543787f73f1ce1e7be63649b30a3c7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/peak2peak.xml"> -<!ENTITY acc1420fa4419b0f270ad3f8d342a3462 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/peak2rms.xml"> <!ENTITY a61595e565a64e6b77b85a8028a66eea6 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pei_tseng_notch.xml"> -<!ENTITY a995c78b83fbbea551450e7012f13797f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/peig.xml"> -<!ENTITY a0442ccd02553bee97fde66f2838895ba SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/periodogram.xml"> -<!ENTITY a87c50c8b5be2390300fbfe46bb1ca120 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/phaseInputParseAs_ab.xml"> -<!ENTITY a02d1bdbd42659a3e4019d0498b14f321 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/phaseInputParseAs_sos.xml"> -<!ENTITY a9d6134bc5259cb5aeb088a6de56a1ec1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/phasedelay.xml"> -<!ENTITY aa37bf7c43823e017babd5e030e712970 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/phasez.xml"> -<!ENTITY a9781f4c56bafacf94214fc66102348a2 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pmusic.xml"> -<!ENTITY a169ef193b097a09b6d3ffec52f5f1485 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/poly2ac.xml"> -<!ENTITY acc6ca2c4223c6eb2605224fd487187d2 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/poly2lsf.xml"> -<!ENTITY a29996fb75db3d782680d4ca3f521df92 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/poly2rc.xml"> -<!ENTITY afd9713fe61540255e892066b5137e59d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/polyscale.xml"> -<!ENTITY aa980f3c9624ae005414c12d7a877509e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/polystab.xml"> -<!ENTITY a7d2647c034f43a9251e2db288609a1b7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/polyval.xml"> -<!ENTITY a882da254da001f466eb31bbd41361a56 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pow2db.xml"> -<!ENTITY a9bbded342cd4ef28c778daaa3422204c SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/primitive.xml"> -<!ENTITY a19ce5d9910772e73e9e89012e50e7b00 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/prony.xml"> -<!ENTITY a345e02cd34c617dbd3421a2105685535 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulseperiod.xml"> -<!ENTITY a6801e6f009157396cae1b490394153e1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulsesep.xml"> -<!ENTITY aaa07642adb4af69e9b9b0e253ee2e09e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulsewidth.xml"> -<!ENTITY a822b7b0a550b48a6c61f5d82f34fb2a6 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/pulstran.xml"> -<!ENTITY a0fb1810de5f83ec9ef3044ef50bea460 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2ac.xml"> -<!ENTITY a3be9e2c9b768acd0dd7364298b0bfee5 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2is.xml"> -<!ENTITY a29e745c3794d5108d4133e8779cc61f7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2lar.xml"> -<!ENTITY ae7f0ecf1810506f8d5417e97c2d11615 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rc2poly.xml"> <!ENTITY ad59b2b322970b02a5fb9d524a71f7beb SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rceps.xml"> -<!ENTITY af8807cd3a5d1b02d4a288e796360fe2a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rcosdesign.xml"> -<!ENTITY a29e9c3d00fcd3169bd8354488b4977cb SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rectpuls.xml"> -<!ENTITY ad7cebbbaa3e2ced9e0c9182662c86b8a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rectwin.xml"> <!ENTITY a6fbe2bc6ace27b1a7b3efaae322ab6dc SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/remez1.xml"> -<!ENTITY ac5914c0be89a4c4439097765c0e7cecc SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/resample.xml"> -<!ENTITY a6da361fad125fe561580436a66d9d7bc SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/residued.xml"> -<!ENTITY ad2dfb1b46cc492f8d323e1b72dc22728 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/residuez.xml"> -<!ENTITY ab2e4570e0024f556a50f7fe8da8ba151 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/risetime.xml"> -<!ENTITY a04ef233b467060d4578b43b8971f38a3 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rlevinson.xml"> -<!ENTITY ac097cbdcb4b28badcff3616e968aa3f7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rms.xml"> -<!ENTITY a6352349298514ffd575c2367e13c14b3 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rooteig.xml"> -<!ENTITY a9ab8a24e5b3bc5753cc3cb6cb6de74b8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rootmusic.xml"> -<!ENTITY a299d9f2b3a06d39e69e093804117f40f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/rssq.xml"> -<!ENTITY a712e3325216084f0ff29f772a41abce2 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sampled2continuous.xml"> -<!ENTITY a4ce9f761027a046b75fe3e665393082f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sawtooth.xml"> -<!ENTITY a06bd86308806c0555e5fd4bf92e2b769 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/schtrig.xml"> -<!ENTITY ae3cd6a4ac731b860300da199c84af7a9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/schurrc.xml"> -<!ENTITY a492bcb2ea4cbe2a4a1f7c0a6d0054c29 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/seqperiod.xml"> -<!ENTITY acfde8a4181328405e0f648d4aa9b843b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sgolay.xml"> -<!ENTITY ab3cbb2aaaf730a032674d18bc031731a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sgolayfilt.xml"> -<!ENTITY a877d0d12418f2bbc520a5d1403d62a32 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/shanwavf.xml"> -<!ENTITY af5fec193153f2dad9515f9b81d500410 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/shiftdata.xml"> <!ENTITY a0c7f7373d0deae4317b309d407e54ed0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sigmoid_train.xml"> <!ENTITY a4298bff4e637e7043203de25a4709e86 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinetone.xml"> <!ENTITY a82677926514040027d5aeb5f81dc9208 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sinewave.xml"> -<!ENTITY aa6b76788e36e0d6d7d2c1ec5d1604798 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/slewrate.xml"> -<!ENTITY aea7524fc34de97fc745d01ae564677a1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2cell.xml"> -<!ENTITY a10a36960bde6b0639f4f358216f704cf SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2ss.xml"> -<!ENTITY a5feba38524659afdbe4015b645b45f4e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2tf.xml"> -<!ENTITY a862e51cacd34ba79921d6ba8fadc2e3d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sos2zp.xml"> -<!ENTITY ab3f2bf2ab34afc8e14ff23ada59fb889 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sosbreak.xml"> -<!ENTITY ad5fcb6a854ea4ab1a826c2cfe506037e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/sosfilt.xml"> -<!ENTITY ad6371d5f083f4ac4fd57fa369e3cce7f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/specgram.xml"> <!ENTITY a050855b5f4f81d6e0c1778748ef21573 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_adf.xml"> <!ENTITY acfaa379418f785d6abf7e7745da20005 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/spectral_xdf.xml"> <!ENTITY ab64c40cd49111b8db8a276e394939be8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/spencer.xml"> -<!ENTITY a6d63448e238679b1ffcf82bb12f3ab56 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ss2sos.xml"> -<!ENTITY a22391101c208e4851f12b2d38b1c940b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/statelevels.xml"> <!ENTITY adbd99bd46c01b285deaa3bcc1d9c6c42 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/stft.xml"> -<!ENTITY a55d26e66ea1393dcf99b7df5ba827b79 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/stmcb.xml"> -<!ENTITY a4d46b917ce6f500dce168ee18a1d17e6 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/strips.xml"> -<!ENTITY a1456cb0354e92a694fa9311ee5362daf SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/subspaceMethodsInputParser.xml"> <!ENTITY af974230baefb26fbc56264ee4ddd9e72 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/synthesis.xml"> -<!ENTITY a74b148e7e471bd9f170cd4dc3087d2c9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/tf2sos.xml"> -<!ENTITY a243b79cdb976d4f432450ea744ca236c SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/tf2zp.xml"> -<!ENTITY a9187ccad1c55b5cd1a5a900b17f2104b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/tf2zpk.xml"> <!ENTITY a62d4009c826ca50e7466327e7eaa3dde SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/tfe.xml"> -<!ENTITY a805a0ed4cae04e01f29ecf5f82345622 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/transpose.xml"> -<!ENTITY a6e3552f90470c430b16dca28da599068 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/trial_iirlp2mb.xml"> -<!ENTITY aff0a00518280d05c9d58a7de46b1b160 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/triang.xml"> -<!ENTITY a5f191b2f9a255115bd43ce5e8c9dfe46 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/tripuls.xml"> -<!ENTITY ab455e53fbe01264634cd4b2a4eb4c907 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/truth.xml"> -<!ENTITY af62b68dd386718f8d27cb4d8364b8335 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/tukeywin.xml"> -<!ENTITY ad88190c86ecf59da91f5e21feb3a23c1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/udecode.xml"> -<!ENTITY a735fd0a0700e104dbe5abbcd22ab616d SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/uencode.xml"> -<!ENTITY a378bace2a9b27a9198f9ffc3ba4efcb2 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/ultrwin.xml"> -<!ENTITY a64dae20703f14187621c3e22fca1ebe9 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/unshiftdata.xml"> -<!ENTITY ac34fae293643ed52873e880dddf91bc1 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/upfirdn.xml"> -<!ENTITY a97101bd7eb46f1029e6ea2a054d405ac SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/upsample.xml"> -<!ENTITY aab35d1b77962f2054fd115ad6f8eb120 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/upsamplefill.xml"> -<!ENTITY a1d535975c3fb7e7d8a0f9658e1c0f6c0 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/var.xml"> -<!ENTITY a091c9c305748e84d41eca16f78e2995f SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/vco.xml"> <!ENTITY a41d68bfcb502a6ea6c94d0fdc154323b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/wconv.xml"> -<!ENTITY aee101979a880a08e0a3c6cdbd958bdf8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/welchwin.xml"> -<!ENTITY a08e5aa34c91e6ebaba8fc63e3af9fe31 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/window.xml"> -<!ENTITY a181e55fa472ec1667172b73625f1b776 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/wkeep.xml"> -<!ENTITY a4a8f4d8bf9f98af1fc99ba9328aa4a50 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/wrev.xml"> -<!ENTITY a812d9c22a396a5551693bb4d6dcae5b8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcorr2.xml"> <!ENTITY af95666e924be0e4cd14c6415f124f7d8 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/xcov1.xml"> <!ENTITY ab4413930d155521ee36e3b7a19400809 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/yulewalker.xml"> -<!ENTITY a07861a28f3bed2170e83949b6e2c3809 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/zerocrossing.xml"> -<!ENTITY a99676709afd29b9c0701a4ca0e97365e SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2sos.xml"> <!ENTITY ac4b6feabfcffe4748eea06cf81d6c28b SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2ss.xml"> <!ENTITY a9eb5dbeb1370f1a1f23b414438b423b7 SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/zp2tf.xml"> -<!ENTITY a61b6ccda9c51a7fb92674a98fd9f358a SYSTEM "/home/abhinav/Documents/IITB/Repos/FOSSEE-Signal-Processing-Toolbox/help/en_US/zplane.xml"> <!--End Entities--> ]> <book version="5.0-subset Scilab" xml:lang="en_US" @@ -264,104 +126,89 @@ <title>FOSSEE Signal Processing Toolbox</title> </info> -<part xml:id='section_5118e822ecc2888aa80042108de4932e'> -<title>FOSSEE Signal Processing Toolbox</title> -&a231328952124a7e187905e71aaf9cee0; -&acc27042e738d175d1131be40ac8443e4; -&a00c7c9f2a0021ff13869dce3b90df38c; +&a80dc2d1be7f85c4fdeda3627eeaeba5b; +&aa8ae4694cb3e88d729d68b31dffb8be2; +&a8b11798eda410c3ebbbdf55e6d9f64c6; +&a3090cfb96d2431a77d3573f5c22eba2c; +&aad06f15b8c56fd06a63ed4c93a7b17de; +&aae1630f64e7d6887cfb5f4801b70358c; +&aa2b1694a7963cd81b95b1b3d497d01c9; +&af4a3555ae3fc9828d4f5bcfe3c082bae; +&a05e673d1d3c435a4f72f7a803fac3c4c; +&a11375970432ad3165248b0408d73a6f9; +&ae086fe3d5e719b7163fe6bbe6379a30b; +&ac6f45dfd4ee34be9be8deaf068a03d3a; +&a33f68328b4f96f612655c918690757cb; +&aac9ca99701b69583c37e4f90cc6f2b31; +&a3192e9ff3cd44b40b7e9390bfc464f1f; +&acb27ed052fb6279db1c0a646bd336d1f; +&ae5182eb8e46dfc6f361e8273d1e85e8e; +&a097842abc76805ff3b2f72a2c9c8205c; +&aeca2a7e1b17564f24ae127e8d114f3d8; +&a4c00e2caafdf45e6fbec22940c767231; +&ae59ce3d617ae3e103df7d517bac2744f; +&a57e47f4f26e6dd49cc38dd803fa42580; +&a59d4bef3e5e6c1d6031b4045141c20e2; +&a0176b20a1535e927094297f2d6b381fb; +&aabb5515641d926736c17451d536a457e; +&a330e5720762d9a372a40e1ee1be0ee8b; +&a0d171476d96c87a3de7983184b9176d0; +&abe76e908f76eb5c6710cc13f1acf2bd6; +&ac7930d64830c9666cfb944d836f4d775; +&abaa22bc1877bc9d4131223d13b402b60; +&a125fdeea0240f72f7ba6ec95fc53fad0; +&a060d37eea26c9ff3b60ac48f121b2205; +&a7c279b72cef3871697c360725d1aca0f; +&af859fa6921261df3081e38479f8231eb; +&a66b94edea7efc8ac92b9ea88227e8c4a; +&ab09b38565f83974426d349f1330ee626; +&ab6965276d6abc03dba25337d98f06a9b; +&aba910d84a7b8dc5c58261362595d6a6f; +&a992cb0804ac63bcee0241a7d3f625ac9; +&a61a6017541d7986bc2fe01dea58f861d; +&a1cac6df59eacdeef9bebfaf8fdd4322a; +&a88faf3b43623f226cdade19a21c3b6cf; +&af4f643c0bd50a55c10e28d7089215e30; +&adbd325d6129658aef1a1c44ebdfaf634; +&a6e52208f7cf5935ac4b2dbbaf19a6a8f; +&a3a436e475ddcbb6edb82e15c9ad4f910; +&a286a5169d98da3bb93e5e169fc582493; +&a61c1b23c2b8ad57c50ce79acde50c677; +&a908bb8057a00d2c709d46a3911b0d4d8; +&aca35ca9bbd1eb7284507f50f56a1947f; +&ad226196ce2e896f6d2052cc004cac236; +&a8a74af8f737940c9fe7be0732e87ed26; +&a63ca6d1cb168f3cdb2f3f92defdb7694; +&a6852d675894772d70b92036fdc80543c; +&a9c59e841b79fd8ce5d6e2521ae6b2347; &a85e6512c560e0bf936c3beeaa098c6c9; -&a2801dc954ec6ac2e1c314367aab7316b; &a1495e32bc54c2e2975785e8e2e4521bd; -&aa86636858e7127f17b93747fc8f3ec30; -&a2804cc9a113729444d60d8cf3c14b554; -&a78af20f681c48f8ec298b379b34418b7; -&af1b518d74e5b9c0251ecb1df257eb407; -&af8a337c857d4b373e49c0032acb1370f; &a8db037e6c34a1ac0f7db27577e08e15d; -&a31f48c823b3b36a8c44e96ff54eaf66a; &a1f0975c78250aac81c6d5a79d8c93eab; -&a4965260600d5ae3055dc940551b4155a; -&a203e8f0f36fcdb6d7dab204312a41134; -&a33562ce8ee2b64f5e49f771f94e64714; -&a2ead104a959d0030deacd8bfd726d641; -&affed76d132b047f7e7dd7feaf7460b96; -&a9a73fbe4c732d8d281a15b9c56b66cd7; -&af063a7c3d52b3fc249eccfea5477233a; &a6b85a8141239aa12da5fd722e12764c5; -&ac13ce08d83a0b050bbcd34097be69474; -&a3ac1d95c0377fbd5021c9ab3878d3381; &a8bfbf0158cec14ad1852c16a1bcd1a9f; -&aad687051b3ff18c103250462607b8bfe; -&ae12b60324a0fd39a6eaeaa29154462d3; &a952ffa1c6ec05774d717ea1a51c966c7; &a63809fd4817619e419316a6fb51f2478; -&a67189797ee7307d2f12d2d9db1429d16; &a6f811f8e27e331fa279fc0462a6dd852; -&af57064694f5b9424a2fb945bab08663a; -&a788630ff50c6129a3217a8b029fdb706; -&ad67eb98c7a334e2ccd2584c52d1f7490; -&a9aaa53086cfad7fff7a9568a895c584e; -&a80fd0493bf42ae683bb78ef95ecc8ff1; -&a1dc032779f7ba8e8f69e8f79dfb144d5; -&a5bf1548e6f5419396992c7e5fee10e44; -&a675cd787aff166461d9e9da55d591875; &a2b41713030e0a16e3e381cc96ff62544; -&adc56a73851265426ed0c3db40f3a0d2e; -&a3d40cac540363daecb58818938d2b1d3; &ad2840257a4ded4da25428645e8a8fd22; -&abaaa2a634a57347cfaeb3f75cc42b298; -&ae8d01defeace3e366cfdce71da71d5e2; &a76e2baa7f20cd4d2b517c7f65f4b0a87; -&a438b318f3a65f8e10cb292c16ee48d3d; -&a012dc78292d46d1a6bfdd411607796ae; -&a4c9381ac38659e2e9ccdf89e9aec08f9; -&a732f6e560fa62dcfe2137f94ce0b812b; &aead61bf67b6895372794be69a80b5ab9; -&a8e9030fad0ea16388695b20a07e04334; &a1d56d414b955dad7a64ae7c13171931e; -&a3ffbb42a185eaf6b62029b6efc883d6b; -&ac93a3534190eae2db767de3935ad4fbc; &afe6460b06ca50c9c2d156ea6806d2ed9; &a227944d1935a789cec8341413d58151d; -&a52aa309fac8ef71cd8d143ac51969fe0; -&aa0ecb21a4fba74cd96dd91d64d4f13ef; &a54ce5c2d68eb85b370486a8657432e59; -&ae7e31ef8153e0b43af5b7d3b54f281b8; -&a0d95063280ebe0c559bd51e94d6809cb; -&a528ea74a7c6d6e7453f0a50c2b96a9ee; -&ae0c094a4d283763517f2a9d8dc2d47dd; &a61dce7ba646ca92aaf5a1ba090aa25e4; &ad146f651e2b3ae0f2c4548c9d31b9324; -&a093a9f733664f253ef62c57cbfd1f345; &ac1d05174ad6903658715873090e2337d; &ad9f3946f61509aa68a6555cc8e1e89c4; -&a0b5dd6bfc7c995741ff59cb1f2e6bd9d; -&a6f9f6be023cda42def4540ebe4a826ad; -&ab3a31ebfc4f38ef5c568256700871cf9; -&aaadfeefbe7128b3e19dfcf58d9259fba; -&a73e8c044770a7cfd905f857689a6baa1; -&a94e89cc06baa492675fb0ba33b84c454; -&a19950da21e14157b78311a84cf566c31; -&a997024f7f60a0e9b5b06fb25b4549196; &a36e682243b9d539831279ec2794d4dcf; &a60063fcaf779858435eab52d0438f7c0; -&a5b1b81f5a27ba264b58d0ede7bf40d6e; -&aaa8fd7d64f02100f0ff4b9f5a601b502; &a6c84bcba9eda7daf35794f2c2b1cfc36; -&a5a10dacc8f7724140837e716eefea546; -&a241d399410079c666c88bab68b4bd8b6; -&a6091479f1738a3f05872855ff81f767e; -&a79d0e19a419a4da0e9852a883c56e875; -&acbf561fbe774483d5bdd6bb94f356c92; -&a829161f2b17c647cab27ce7e4e177861; -&a09f64c6e5d7a6e94067ecb6f99796457; &ad615141134f915d2325d00926eea7422; -&a277e25e2845fbbffbb98cb9bd813d43e; &a350fe0538e119f50421b72fb0177d862; -&a89a8d615b106b54285bf3493164dde99; &a5d806f19e64dff92d1430af2e3d36434; &a93018e4b205ad1077ed39b70108ab6f5; -&a564da052a4377e3262d3e2eaaff74169; &a55af75fd2a9b6cd5cd41835b0a2cc3b9; &af8c65bd6904096611c2566ec57c5b032; &a6fd54fa41c0d83b890ecda9094cd757f; @@ -370,150 +217,25 @@ &ac144cb9b3a31dd3325159821e24eac51; &a414728f3a3bc742adaead017680e9eb1; &a2992435e7a3da65808422b5922e44afd; -&a056e2f09f5221e8999a0fea1c1fa878d; -&a9142e379fc897ce07ddb4601b5f6eff9; -&adc184a6cbbaa2bb5ce1233a789ac1f35; -&a05f89038eb00b07e70e0873d8d1dfdbd; -&a2fb2ab4d09d36ef1d84d3666c77ea926; -&a3d73ca698d63b8e1aca3d442d62d67c8; &a17c1049c0e838c40c3d0c6330a1ed18e; -&a9f42719de3232f6757f8f9645f04d2ba; -&aa2dde2bdf03f823c2c8bcbe7c32ac6f5; -&a1341fabc85cc66d9215f09a3b3389f21; -&a9582da81a2996f4949f3a56504ac7af0; -&af06621ea64b7432870e0c9de816a7a3f; -&aedaf12b58709e4d66d9594c045e7fab9; -&a076a06248e94759c2531feb6af82b4b2; -&a550cb394018ff7036f3bf7ed85cd894a; -&aadd3778bbb3c69186062e83df88617b6; -&ae880c6aad471ddeadec92a73990a8916; -&a3a1de36d214f8b24968c347990a780ca; -&afd0accae740fccac83b6e58da7ad7f67; -&aaff1fbd30d203394a0065360948cb552; -&a64409832c5b89c298638be3ae481e2db; -&a94b0fd913cff757ba932421487806ce2; -&a501538e66b60a9dad666d8feebebc808; -&a2cd55936714d73ab7cfc5b191e1ab310; -&a5100d9ea14ecae777adf29449f8326bd; -&a5d96b63e9d96e401c886dc2e59f352ae; -&a7eb314d0aac7fe50a8b374d1fe09224a; -&a5f1fdcf4bd80a0fdc97b1a66dc3d6126; -&aa6381ef62e04401a281532a2b26866e4; -&ab54549e25f72917f5984976326446806; -&aad2ae34d6eb1330043839076bfe50370; -&a2cb9870e7f3797bd8079af0d6bd72c2a; -&a6f84b9f7d14410ce7b79c7e06629063c; -&ab20a31499c13238dfad5e6a9a47494a8; &a61d7d15c9f4c0556b04a98e7f4cd299c; -&af78d47b6f1d4f40097f16df906159928; &a39a1a3343fe803f4afaf048b8d1570f3; -&a0d9a41d49a4663bd5ae6e17bce7f3f9d; -&ae90b90188af214c9b4bfbfd5186a57e3; -&ab8ccec6c3405c19a470f1f3ca558ad07; -&a454451daa892c02d56805334a51be93f; -&ac1059f65770cbb8f7e8f63040d89272e; -&a66543787f73f1ce1e7be63649b30a3c7; -&acc1420fa4419b0f270ad3f8d342a3462; &a61595e565a64e6b77b85a8028a66eea6; -&a995c78b83fbbea551450e7012f13797f; -&a0442ccd02553bee97fde66f2838895ba; -&a87c50c8b5be2390300fbfe46bb1ca120; -&a02d1bdbd42659a3e4019d0498b14f321; -&a9d6134bc5259cb5aeb088a6de56a1ec1; -&aa37bf7c43823e017babd5e030e712970; -&a9781f4c56bafacf94214fc66102348a2; -&a169ef193b097a09b6d3ffec52f5f1485; -&acc6ca2c4223c6eb2605224fd487187d2; -&a29996fb75db3d782680d4ca3f521df92; -&afd9713fe61540255e892066b5137e59d; -&aa980f3c9624ae005414c12d7a877509e; -&a7d2647c034f43a9251e2db288609a1b7; -&a882da254da001f466eb31bbd41361a56; -&a9bbded342cd4ef28c778daaa3422204c; -&a19ce5d9910772e73e9e89012e50e7b00; -&a345e02cd34c617dbd3421a2105685535; -&a6801e6f009157396cae1b490394153e1; -&aaa07642adb4af69e9b9b0e253ee2e09e; -&a822b7b0a550b48a6c61f5d82f34fb2a6; -&a0fb1810de5f83ec9ef3044ef50bea460; -&a3be9e2c9b768acd0dd7364298b0bfee5; -&a29e745c3794d5108d4133e8779cc61f7; -&ae7f0ecf1810506f8d5417e97c2d11615; &ad59b2b322970b02a5fb9d524a71f7beb; -&af8807cd3a5d1b02d4a288e796360fe2a; -&a29e9c3d00fcd3169bd8354488b4977cb; -&ad7cebbbaa3e2ced9e0c9182662c86b8a; &a6fbe2bc6ace27b1a7b3efaae322ab6dc; -&ac5914c0be89a4c4439097765c0e7cecc; -&a6da361fad125fe561580436a66d9d7bc; -&ad2dfb1b46cc492f8d323e1b72dc22728; -&ab2e4570e0024f556a50f7fe8da8ba151; -&a04ef233b467060d4578b43b8971f38a3; -&ac097cbdcb4b28badcff3616e968aa3f7; -&a6352349298514ffd575c2367e13c14b3; -&a9ab8a24e5b3bc5753cc3cb6cb6de74b8; -&a299d9f2b3a06d39e69e093804117f40f; -&a712e3325216084f0ff29f772a41abce2; -&a4ce9f761027a046b75fe3e665393082f; -&a06bd86308806c0555e5fd4bf92e2b769; -&ae3cd6a4ac731b860300da199c84af7a9; -&a492bcb2ea4cbe2a4a1f7c0a6d0054c29; -&acfde8a4181328405e0f648d4aa9b843b; -&ab3cbb2aaaf730a032674d18bc031731a; -&a877d0d12418f2bbc520a5d1403d62a32; -&af5fec193153f2dad9515f9b81d500410; &a0c7f7373d0deae4317b309d407e54ed0; &a4298bff4e637e7043203de25a4709e86; &a82677926514040027d5aeb5f81dc9208; -&aa6b76788e36e0d6d7d2c1ec5d1604798; -&aea7524fc34de97fc745d01ae564677a1; -&a10a36960bde6b0639f4f358216f704cf; -&a5feba38524659afdbe4015b645b45f4e; -&a862e51cacd34ba79921d6ba8fadc2e3d; -&ab3f2bf2ab34afc8e14ff23ada59fb889; -&ad5fcb6a854ea4ab1a826c2cfe506037e; -&ad6371d5f083f4ac4fd57fa369e3cce7f; &a050855b5f4f81d6e0c1778748ef21573; &acfaa379418f785d6abf7e7745da20005; &ab64c40cd49111b8db8a276e394939be8; -&a6d63448e238679b1ffcf82bb12f3ab56; -&a22391101c208e4851f12b2d38b1c940b; &adbd99bd46c01b285deaa3bcc1d9c6c42; -&a55d26e66ea1393dcf99b7df5ba827b79; -&a4d46b917ce6f500dce168ee18a1d17e6; -&a1456cb0354e92a694fa9311ee5362daf; &af974230baefb26fbc56264ee4ddd9e72; -&a74b148e7e471bd9f170cd4dc3087d2c9; -&a243b79cdb976d4f432450ea744ca236c; -&a9187ccad1c55b5cd1a5a900b17f2104b; &a62d4009c826ca50e7466327e7eaa3dde; -&a805a0ed4cae04e01f29ecf5f82345622; -&a6e3552f90470c430b16dca28da599068; -&aff0a00518280d05c9d58a7de46b1b160; -&a5f191b2f9a255115bd43ce5e8c9dfe46; -&ab455e53fbe01264634cd4b2a4eb4c907; -&af62b68dd386718f8d27cb4d8364b8335; -&ad88190c86ecf59da91f5e21feb3a23c1; -&a735fd0a0700e104dbe5abbcd22ab616d; -&a378bace2a9b27a9198f9ffc3ba4efcb2; -&a64dae20703f14187621c3e22fca1ebe9; -&ac34fae293643ed52873e880dddf91bc1; -&a97101bd7eb46f1029e6ea2a054d405ac; -&aab35d1b77962f2054fd115ad6f8eb120; -&a1d535975c3fb7e7d8a0f9658e1c0f6c0; -&a091c9c305748e84d41eca16f78e2995f; &a41d68bfcb502a6ea6c94d0fdc154323b; -&aee101979a880a08e0a3c6cdbd958bdf8; -&a08e5aa34c91e6ebaba8fc63e3af9fe31; -&a181e55fa472ec1667172b73625f1b776; -&a4a8f4d8bf9f98af1fc99ba9328aa4a50; -&a812d9c22a396a5551693bb4d6dcae5b8; &af95666e924be0e4cd14c6415f124f7d8; &ab4413930d155521ee36e3b7a19400809; -&a07861a28f3bed2170e83949b6e2c3809; -&a99676709afd29b9c0701a4ca0e97365e; &ac4b6feabfcffe4748eea06cf81d6c28b; &a9eb5dbeb1370f1a1f23b414438b423b7; -&a61b6ccda9c51a7fb92674a98fd9f358a; </part> </book> diff --git a/help/en_US/pburg.xml b/help/en_US/pburg.xml new file mode 100644 index 0000000..3e5f703 --- /dev/null +++ b/help/en_US/pburg.xml @@ -0,0 +1,71 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from pburg.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="pburg" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>pburg</refname> + <refpurpose>Calculate Burg maximum-entropy power spectral density.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [psd,f_out] = pburg(x,poles,freq,Fs,range,method,plot_type,criterion) + All but the first two arguments are optional and may be empty. + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> [vector] sampled data</para></listitem></varlistentry> + <varlistentry><term>poles:</term> + <listitem><para> [integer scalar] required number of poles of the AR model</para></listitem></varlistentry> + <varlistentry><term>freq:</term> + <listitem><para> [real vector] frequencies at which power spectral density is calculated [integer scalar] number of uniformly distributed frequency values at which spectral density is calculated. [default=256]</para></listitem></varlistentry> + <varlistentry><term>Fs:</term> + <listitem><para> [real scalar] sampling frequency (Hertz) [default=1]</para></listitem></varlistentry> + <varlistentry><term>range:</term> + <listitem><para> 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum. 'whole', 'twosided' : frequency range of the spectrum is -sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'.</para></listitem></varlistentry> + <varlistentry><term>method:</term> + <listitem><para> 'fft': use FFT to calculate power spectral density. 'poly': calculate spectral density as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2.</para></listitem></varlistentry> + <varlistentry><term>plot_type:</term> + <listitem><para> 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db' specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value.</para></listitem></varlistentry> + <varlistentry><term>criterion:</term> + <listitem><para> [optional string arg] model-selection criterion. Limits the number of poles so that spurious poles are not added when the whitened data has no more information in it (see Kay & Marple, 1981). Recognized values are 'AKICc' -- approximate corrected Kullback information criterion (recommended), 'KIC' -- Kullback information criterion 'AICc' -- corrected Akaike information criterion 'AIC' -- Akaike information criterion 'FPE' -- final prediction error" criterion The default is to NOT use a model-selection criterion.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function is being called from Octave +This function is a wrapper for arburg and ar_psd. +The functions "arburg" and "ar_psd" do all the work. +See "help arburg" and "help ar_psd" for further details. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +a = [1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746]; +[psd,f_out] = pburg(a,2); + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/pyulear.xml b/help/en_US/pyulear.xml new file mode 100644 index 0000000..87171cd --- /dev/null +++ b/help/en_US/pyulear.xml @@ -0,0 +1,51 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from pyulear.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="pyulear" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>pyulear</refname> + <refpurpose></refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type) + All but the first two arguments are optional and may be empty. + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> [vector] sampled data</para></listitem></varlistentry> + <varlistentry><term>poles:</term> + <listitem><para> [integer scalar] required number of poles of the AR model</para></listitem></varlistentry> + <varlistentry><term>freq:</term> + <listitem><para> [real vector] frequencies at which power spectral density is calculated [integer scalar] number of uniformly distributed frequency values at which spectral density is calculated. [default=256]</para></listitem></varlistentry> + <varlistentry><term>Fs:</term> + <listitem><para> [real scalar] sampling frequency (Hertz) [default=1]</para></listitem></varlistentry> + <varlistentry><term>range:</term> + <listitem><para> 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum. 'whole', 'twosided' : frequency range of the spectrum is -sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'.</para></listitem></varlistentry> + <varlistentry><term>method:</term> + <listitem><para> 'fft': use FFT to calculate power spectral density. 'poly': calculate spectral density as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2.</para></listitem></varlistentry> + <varlistentry><term>plot_type:</term> + <listitem><para> 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db' specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value.</para></listitem></varlistentry> + </variablelist> +</refsection> +</refentry> diff --git a/help/en_US/qp_kaiser.xml b/help/en_US/qp_kaiser.xml new file mode 100644 index 0000000..005f11a --- /dev/null +++ b/help/en_US/qp_kaiser.xml @@ -0,0 +1,64 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from qp_kaiser.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="qp_kaiser" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>qp_kaiser</refname> + <refpurpose>Computes a finite impulse response (FIR) filter for use with a quasi-perfect reconstruction polyphase-network filter bank.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + qp_kaiser (nb, at, linear) + qp_kaiser (nb, at) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>nb:</term> + <listitem><para> Number of bands</para></listitem></varlistentry> + <varlistentry><term>at:</term> + <listitem><para> Attenuation</para></listitem></varlistentry> + <varlistentry><term>linear:</term> + <listitem><para> When not zero, minimum-phase calculation is omitted.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +This version utilizes a Kaiser window to shape the frequency response of the designed filter. Tha number nb of bands and the desired attenuation at in the stop-band are given as parameters. + </para> + <para> +The Kaiser window is multiplied by the ideal impulse response h(n)=a.sinc(a.n) and converted to its minimum-phase version by means of a Hilbert transform. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +qp_kaiser (5, 5, 1) +ans = + +0.11591 0.25606 0.25606 0.25606 0.11591 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS Binary files differindex 21a4d0c..b8d5d55 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB Binary files differindex 0aba77c..e2e4345 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS Binary files differindex b92856b..9ddce22 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS Binary files differindex 0d0a23b..d49b02f 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA index a8a67ce..cdbc5eb 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA @@ -1,2 +1,2 @@ JavaSearch 1.0 -TMAP bs=2048 rt=1 fl=-1 id1=2516 id2=1 +TMAP bs=2048 rt=1 fl=-1 id1=1968 id2=1 diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP Binary files differindex 09998f4..cc2d0ec 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP diff --git a/help/en_US/scilab_en_US_help/jhelpmap.jhm b/help/en_US/scilab_en_US_help/jhelpmap.jhm index e641cba..449698a 100644 --- a/help/en_US/scilab_en_US_help/jhelpmap.jhm +++ b/help/en_US/scilab_en_US_help/jhelpmap.jhm @@ -3,14 +3,20 @@ <map version="1.0"> <mapID target="index" url="index.html"/> <mapID target="section_cc2bc01c47967d47fcf3507a91d572ba" url="section_cc2bc01c47967d47fcf3507a91d572ba.html"/> +<mapID target="section_234c65355e471cd38bd717d720add7db" url="section_234c65355e471cd38bd717d720add7db.html"/> +======= +<mapID target="section_5118e822ecc2888aa80042108de4932e" url="section_5118e822ecc2888aa80042108de4932e.html"/> +>>>>>>> 9f6962b19c4a5fa76f7525a72faabb1b754712ad <mapID target="ac2poly" url="ac2poly.html"/> <mapID target="ac2rc" url="ac2rc.html"/> <mapID target="arParEst" url="arParEst.html"/> <mapID target="ar_psd" url="ar_psd.html"/> <mapID target="arburg" url="arburg.html"/> +<mapID target="arch_rnd" url="arch_rnd.html"/> <mapID target="arch_test" url="arch_test.html"/> <mapID target="arch_fit" url="arch_fit.html"/> <mapID target="arcov" url="arcov.html"/> +<mapID target="arma_rnd" url="arma_rnd.html"/> <mapID target="armcov" url="armcov.html"/> <mapID target="aryule" url="aryule.html"/> <mapID target="autoreg_matrix" url="autoreg_matrix.html"/> @@ -42,6 +48,7 @@ <mapID target="cheby2" url="cheby2.html"/> <mapID target="check" url="check.html"/> <mapID target="chirp" url="chirp.html"/> +<mapID target="cl2bp" url="cl2bp.html"/> <mapID target="clustersegment" url="clustersegment.html"/> <mapID target="cmorwavf" url="cmorwavf.html"/> <mapID target="cohere" url="cohere.html"/> @@ -71,10 +78,14 @@ <mapID target="enbw" url="enbw.html"/> <mapID target="eqtflength" url="eqtflength.html"/> <mapID target="falltime" url="falltime.html"/> +<mapID target="fft1" url="fft1.html"/> +<mapID target="fft21" url="fft21.html"/> <mapID target="fft" url="fft.html"/> <mapID target="fft2" url="fft2.html"/> <mapID target="fftconv" url="fftconv.html"/> <mapID target="fftfilt" url="fftfilt.html"/> +<mapID target="fftw1" url="fftw1.html"/> +<mapID target="fht" url="fht.html"/> <mapID target="fftshift1" url="fftshift1.html"/> <mapID target="fftn" url="fftn.html"/> <mapID target="fht" url="fht.html"/> @@ -91,6 +102,7 @@ <mapID target="firtype" url="firtype.html"/> <mapID target="flattopwin" url="flattopwin.html"/> <mapID target="fracshift" url="fracshift.html"/> +<mapID target="freqs" url="freqs.html"/> <mapID target="fractdiff" url="fractdiff.html"/> <mapID target="freqs" url="freqs.html"/> <mapID target="freqz" url="freqz.html"/> @@ -114,6 +126,10 @@ <mapID target="idct1" url="idct1.html"/> <mapID target="idct2" url="idct2.html"/> <mapID target="idst1" url="idst1.html"/> +<mapID target="ifft1" url="ifft1.html"/> +<mapID target="ifft21" url="ifft21.html"/> +<mapID target="ifht" url="ifht.html"/> +<mapID target="ifwht" url="ifwht.html"/> <mapID target="ifft" url="ifft.html"/> <mapID target="ifft2" url="ifft2.html"/> <mapID target="ifftshift1" url="ifftshift1.html"/> @@ -127,6 +143,8 @@ <mapID target="interp" url="interp.html"/> <mapID target="intfilt" url="intfilt.html"/> <mapID target="invfreq" url="invfreq.html"/> +<mapID target="invfreqs" url="invfreqs.html"/> +<mapID target="invfreqz" url="invfreqz.html"/> <mapID target="invimpinvar" url="invimpinvar.html"/> <mapID target="is2rc" url="is2rc.html"/> <mapID target="isallpass" url="isallpass.html"/> @@ -136,6 +154,7 @@ <mapID target="isminphase" url="isminphase.html"/> <mapID target="isstable" url="isstable.html"/> <mapID target="kaiser" url="kaiser.html"/> +<mapID target="kaiserord" url="kaiserord.html"/> <mapID target="lar2rc" url="lar2rc.html"/> <mapID target="latc2tf" url="latc2tf.html"/> <mapID target="latcfilt" url="latcfilt.html"/> @@ -160,6 +179,7 @@ <mapID target="nnls" url="nnls.html"/> <mapID target="nuttallwin" url="nuttallwin.html"/> <mapID target="parzenwin" url="parzenwin.html"/> +<mapID target="pburg" url="pburg.html"/> <mapID target="pchip" url="pchip.html"/> <mapID target="pchips" url="pchips.html"/> <mapID target="peak2peak" url="peak2peak.html"/> @@ -185,7 +205,9 @@ <mapID target="pulsesep" url="pulsesep.html"/> <mapID target="pulsewidth" url="pulsewidth.html"/> <mapID target="pulstran" url="pulstran.html"/> +<mapID target="pyulear" url="pyulear.html"/> <mapID target="pwelch" url="pwelch.html"/> +<mapID target="qp_kaiser" url="qp_kaiser.html"/> <mapID target="rc2ac" url="rc2ac.html"/> <mapID target="rc2is" url="rc2is.html"/> <mapID target="rc2lar" url="rc2lar.html"/> @@ -209,6 +231,7 @@ <mapID target="schtrig" url="schtrig.html"/> <mapID target="schurrc" url="schurrc.html"/> <mapID target="seqperiod" url="seqperiod.html"/> +<mapID target="sftrans" url="sftrans.html"/> <mapID target="sgolay" url="sgolay.html"/> <mapID target="sgolayfilt" url="sgolayfilt.html"/> <mapID target="shanwavf" url="shanwavf.html"/> @@ -237,6 +260,7 @@ <mapID target="tf2sos" url="tf2sos.html"/> <mapID target="tf2zp" url="tf2zp.html"/> <mapID target="tf2zpk" url="tf2zpk.html"/> +<mapID target="tfestimate" url="tfestimate.html"/> <mapID target="tfe" url="tfe.html"/> <mapID target="transpose" url="transpose.html"/> <mapID target="trial_iirlp2mb" url="trial_iirlp2mb.html"/> @@ -259,6 +283,7 @@ <mapID target="window" url="window.html"/> <mapID target="wkeep" url="wkeep.html"/> <mapID target="wrev" url="wrev.html"/> +<mapID target="xcorr1" url="xcorr1.html"/> <mapID target="xcorr2" url="xcorr2.html"/> <mapID target="xcov1" url="xcov1.html"/> <mapID target="yulewalker" url="yulewalker.html"/> diff --git a/help/en_US/scilab_en_US_help/jhelptoc.xml b/help/en_US/scilab_en_US_help/jhelptoc.xml index b8ae037..f3c806f 100644 --- a/help/en_US/scilab_en_US_help/jhelptoc.xml +++ b/help/en_US/scilab_en_US_help/jhelptoc.xml @@ -8,9 +8,11 @@ <tocitem target="arParEst" text="arParEst"/> <tocitem target="ar_psd" text="ar_psd"/> <tocitem target="arburg" text="arburg"/> +<tocitem target="arch_rnd" text="arch_rnd"/> <tocitem target="arch_test" text="arch_test"/> <tocitem target="arch_fit" text="arch_fit"/> <tocitem target="arcov" text="arcov"/> +<tocitem target="arma_rnd" text="arma_rnd"/> <tocitem target="armcov" text="armcov"/> <tocitem target="aryule" text="aryule"/> <tocitem target="autoreg_matrix" text="autoreg_matrix"/> @@ -42,6 +44,7 @@ <tocitem target="cheby2" text="cheby2"/> <tocitem target="check" text="check"/> <tocitem target="chirp" text="chirp"/> +<tocitem target="cl2bp" text="cl2bp"/> <tocitem target="clustersegment" text="clustersegment"/> <tocitem target="cmorwavf" text="cmorwavf"/> <tocitem target="cohere" text="cohere"/> @@ -71,10 +74,12 @@ <tocitem target="enbw" text="enbw"/> <tocitem target="eqtflength" text="eqtflength"/> <tocitem target="falltime" text="falltime"/> -<tocitem target="fft" text="fft"/> -<tocitem target="fft2" text="fft2"/> +<tocitem target="fft1" text="fft1"/> +<tocitem target="fft21" text="fft21"/> <tocitem target="fftconv" text="fftconv"/> <tocitem target="fftfilt" text="fftfilt"/> +<tocitem target="fftw1" text="fftw1"/> +<tocitem target="fht" text="fht"/> <tocitem target="fftshift1" text="fftshift1"/> <tocitem target="fftn" text="fftn"/> <tocitem target="fht" text="fht"/> @@ -91,6 +96,7 @@ <tocitem target="firtype" text="firtype"/> <tocitem target="flattopwin" text="flattopwin"/> <tocitem target="fracshift" text="fracshift"/> +<tocitem target="freqs" text="freqs"/> <tocitem target="fractdiff" text="fractdiff"/> <tocitem target="freqs" text="freqs"/> <tocitem target="freqz" text="freqz"/> @@ -114,6 +120,10 @@ <tocitem target="idct1" text="idct1"/> <tocitem target="idct2" text="idct2"/> <tocitem target="idst1" text="idst1"/> +<tocitem target="ifft1" text="ifft1"/> +<tocitem target="ifft21" text="ifft21"/> +<tocitem target="ifht" text="ifht"/> +<tocitem target="ifwht" text="ifwht"/> <tocitem target="ifft" text="ifft"/> <tocitem target="ifft2" text="ifft2"/> <tocitem target="ifftshift1" text="ifftshift1"/> @@ -127,6 +137,8 @@ <tocitem target="interp" text="interp"/> <tocitem target="intfilt" text="intfilt"/> <tocitem target="invfreq" text="invfreq"/> +<tocitem target="invfreqs" text="invfreqs"/> +<tocitem target="invfreqz" text="invfreqz"/> <tocitem target="invimpinvar" text="invimpinvar"/> <tocitem target="is2rc" text="is2rc"/> <tocitem target="isallpass" text="isallpass"/> @@ -136,6 +148,7 @@ <tocitem target="isminphase" text="isminphase"/> <tocitem target="isstable" text="isstable"/> <tocitem target="kaiser" text="kaiser"/> +<tocitem target="kaiserord" text="kaiserord"/> <tocitem target="lar2rc" text="lar2rc"/> <tocitem target="latc2tf" text="latc2tf"/> <tocitem target="latcfilt" text="latcfilt"/> @@ -160,6 +173,7 @@ <tocitem target="nnls" text="nnls"/> <tocitem target="nuttallwin" text="nuttallwin"/> <tocitem target="parzenwin" text="parzenwin"/> +<tocitem target="pburg" text="pburg"/> <tocitem target="pchip" text="pchip"/> <tocitem target="pchips" text="pchips"/> <tocitem target="peak2peak" text="peak2peak"/> @@ -185,7 +199,9 @@ <tocitem target="pulsesep" text="pulsesep"/> <tocitem target="pulsewidth" text="pulsewidth"/> <tocitem target="pulstran" text="pulstran"/> +<tocitem target="pyulear" text="pyulear"/> <tocitem target="pwelch" text="pwelch"/> +<tocitem target="qp_kaiser" text="qp_kaiser"/> <tocitem target="rc2ac" text="rc2ac"/> <tocitem target="rc2is" text="rc2is"/> <tocitem target="rc2lar" text="rc2lar"/> @@ -209,6 +225,7 @@ <tocitem target="schtrig" text="schtrig"/> <tocitem target="schurrc" text="schurrc"/> <tocitem target="seqperiod" text="seqperiod"/> +<tocitem target="sftrans" text="sftrans"/> <tocitem target="sgolay" text="sgolay"/> <tocitem target="sgolayfilt" text="sgolayfilt"/> <tocitem target="shanwavf" text="shanwavf"/> @@ -237,6 +254,7 @@ <tocitem target="tf2sos" text="tf2sos"/> <tocitem target="tf2zp" text="tf2zp"/> <tocitem target="tf2zpk" text="tf2zpk"/> +<tocitem target="tfestimate" text="tfestimate"/> <tocitem target="tfe" text="tfe"/> <tocitem target="transpose" text="transpose"/> <tocitem target="trial_iirlp2mb" text="trial_iirlp2mb"/> @@ -259,6 +277,7 @@ <tocitem target="window" text="window"/> <tocitem target="wkeep" text="wkeep"/> <tocitem target="wrev" text="wrev"/> +<tocitem target="xcorr1" text="xcorr1"/> <tocitem target="xcorr2" text="xcorr2"/> <tocitem target="xcov1" text="xcov1"/> <tocitem target="yulewalker" text="yulewalker"/> diff --git a/help/en_US/sftrans.xml b/help/en_US/sftrans.xml new file mode 100644 index 0000000..56aee48 --- /dev/null +++ b/help/en_US/sftrans.xml @@ -0,0 +1,100 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from sftrans.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="sftrans" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>sftrans</refname> + <refpurpose>Transform band edges of a generic lowpass filter (cutoff at W=1) represented in splane zero-pole-gain form.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop) + [Sz, Sp] = sftrans (Sz, Sp, Sg, W, stop) + [Sz] = sftrans (Sz, Sp, Sg, W, stop) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>Sz:</term> + <listitem><para> Zeros.</para></listitem></varlistentry> + <varlistentry><term>Sp:</term> + <listitem><para> Poles.</para></listitem></varlistentry> + <varlistentry><term>Sg:</term> + <listitem><para> Gain.</para></listitem></varlistentry> + <varlistentry><term>W:</term> + <listitem><para> Edge of target filter.</para></listitem></varlistentry> + <varlistentry><term>stop:</term> + <listitem><para> True for high pass and band stop filters or false for low pass and band pass filters.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros +individually. The following table summarizes the transformation: + </para> + <para> +Transform Zero at x Pole at x +---------------- ------------------------- ------------------------ +Low Pass zero: Fc x/C pole: Fc x/C +S -> C S/Fc gain: C/Fc gain: Fc/C +---------------- ------------------------- ------------------------ +High Pass zero: Fc C/x pole: Fc C/x +S -> C Fc/S pole: 0 zero: 0 +gain: -x gain: -1/x +---------------- ------------------------- ------------------------ +Band Pass zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl) +S^2+FhFl pole: 0 zero: 0 +S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C +S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2 +---------------- ------------------------- ------------------------ +Band Stop zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl) +S(Fh-Fl) pole: +-sqrt(-FhFl) zero: +-sqrt(-FhFl) +S -> C -------- gain: -x gain: -1/x +S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2 +---------------- ------------------------- ------------------------ +Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT) +2 z-1 pole: -1 zero: -1 +S -> - --- gain: (2-xT)/T gain: (2-xT)/T +T z+1 +---------------- ------------------------- ------------------------ + </para> + <para> +where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious +algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form: + </para> + <para> +H(S)=g prod(S-Xi)/prod(S-Xj) +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[Sz, Sp, Sg] = sftrans (5, 10, 15, 20, 30) +Sz = 4 +Sp = 2 +Sg = 7.5000 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/tfestimate.xml b/help/en_US/tfestimate.xml new file mode 100644 index 0000000..06ed2dd --- /dev/null +++ b/help/en_US/tfestimate.xml @@ -0,0 +1,77 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from tfestimate.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="tfestimate" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>tfestimate</refname> + <refpurpose></refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + tfestimate (x, y, window, overlap, Nfft, Fs, range) + [Pxx, freq] = tfestimate (…) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>x:</term> + <listitem><para> Input.</para></listitem></varlistentry> + <varlistentry><term>y:</term> + <listitem><para> Output.</para></listitem></varlistentry> + <varlistentry><term>window:</term> + <listitem><para> [real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument.</para></listitem></varlistentry> + <varlistentry><term>overlap:</term> + <listitem><para> [real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 .</para></listitem></varlistentry> + <varlistentry><term>Nfft:</term> + <listitem><para> [integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently.</para></listitem></varlistentry> + <varlistentry><term>Fs:</term> + <listitem><para> [real scalar] sampling frequency (Hertz); default=1.0</para></listitem></varlistentry> + <varlistentry><term>range:</term> + <listitem><para> 'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. 'whole', 'twosided' : frequency range of the spectrum is -Fs/2 to Fs/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This function is being called from Octave. +Estimate transfer function of system with input x and output y. Use the Welch (1967) periodogram/FFT method. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[Pxx, freq]=tfestimate ([1 2 3], [4 5 6]) +Pxx = + +1.7500 + 0.0000i +1.5947 + 0.3826i +1.2824 + 0.0000i + +freq = + +0.00000 +0.25000 +0.50000 + ]]></programlisting> +</refsection> +</refentry> diff --git a/help/en_US/xcorr1.xml b/help/en_US/xcorr1.xml new file mode 100644 index 0000000..b89de1a --- /dev/null +++ b/help/en_US/xcorr1.xml @@ -0,0 +1,81 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from xcorr1.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="xcorr1" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>xcorr1</refname> + <refpurpose>Estimates the cross-correlation.</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + [R, lag] = xcorr1 (X, Y, maxlag, scale) + [R, lag] = xcorr1 (X, Y, maxlag) + [R, lag] = xcorr1 (X, Y) + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>X:</term> + <listitem><para> [non-empty; real or complex; vector or matrix] data.</para></listitem></varlistentry> + <varlistentry><term>Y:</term> + <listitem><para> [real or complex vector] data.</para></listitem></varlistentry> + <varlistentry><term>maxlag:</term> + <listitem><para> [integer scalar] maximum correlation lag If omitted, the default value is N-1, where N is the greater of the lengths of X and Y or, if X is a matrix, the number of rows in X.</para></listitem></varlistentry> + <varlistentry><term>scale:</term> + <listitem><para> [character string] specifies the type of scaling applied to the correlation vector (or matrix). is one of:</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +This is an Octave function. +Estimate the cross correlation R_xy(k) of vector arguments X and Y or, if Y is omitted, estimate autocorrelation R_xx(k) of vector X, for a range of lags k specified by argument "maxlag". If X is a +matrix, each column of X is correlated with itself and every other column. + </para> + <para> +The cross-correlation estimate between vectors "x" and "y" (of length N) for lag "k" is given by + </para> + <para> +N +R_xy(k) = sum x_{i+k} conj(y_i), +i=1 + </para> + <para> +where data not provided (for example x(-1), y(N+1)) is zero. Note the definition of cross-correlation given above. To compute a cross-correlation consistent with the field of statistics, see xcov. +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +[R, lag] = xcorr1 ( [5 5], [2 2], 2, 'biased' ) + +R = + +0 5 10 5 0 + +lag = + +-2 -1 0 1 2 + ]]></programlisting> +</refsection> +</refentry> diff --git a/jar/scilab_en_US_help.jar b/jar/scilab_en_US_help.jar Binary files differindex d03c85c..c60a3ae 100644 --- a/jar/scilab_en_US_help.jar +++ b/jar/scilab_en_US_help.jar diff --git a/macros/arch_rnd.sci b/macros/arch_rnd.sci new file mode 100644 index 0000000..50facc4 --- /dev/null +++ b/macros/arch_rnd.sci @@ -0,0 +1,43 @@ +function res = arch_rnd (a, b, t) +//Simulate an ARCH sequence of length t with AR coefficients b and CH coefficients a. +//Calling Sequence +//arch_rnd (a, b, t) +//Parameters +//a: CH coefficients +//b: AR coefficients +//t: Length of ARCH sequence +//Description +//This is an Octave function. +//It Simulates an ARCH sequence of length t with AR coefficients b and CH coefficients a. +//The result y(t) follows the model +// +//y(t) = b(1) + b(2) * y(t-1) + … + b(lb) * y(t-lb+1) + e(t), +//where e(t), given y up to time t-1, is N(0, h(t)), with +// +//h(t) = a(1) + a(2) * e(t-1)^2 + … + a(la) * e(t-la+1)^2 +//Examples +//a = [1 2 3 4 5]; +//b = [7 8 9 10]; +//arch_rnd (a, b, t) +//ans = +// +// 6.1037e+00 +// 5.7294e+01 +// 5.7390e+02 +// 6.3063e+03 +// 6.8695e+04 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 3 | rhs > 3) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 3 then + res = callOctave("arch_rnd",a, b, t) + + end +endfunction diff --git a/macros/arma_rnd.sci b/macros/arma_rnd.sci new file mode 100644 index 0000000..bc826f4 --- /dev/null +++ b/macros/arma_rnd.sci @@ -0,0 +1,52 @@ +function res = arma_rnd (a, b, v, t, n) +//Return a simulation of the ARMA model. +//Calling Sequence +//arma_rnd (a, b, v, t, n) +//arma_rnd (a, b, v, t) +//Parameters +//a: vector +//b: vector +//v: Variance +//t: Length of output vector +//n: Number of dummy x(i) used for initialization +//Description +//This is an Octave function. +//The ARMA model is defined by +// +//x(n) = a(1) * x(n-1) + … + a(k) * x(n-k) +// + e(n) + b(1) * e(n-1) + … + b(l) * e(n-l) +//in which k is the length of vector a, l is the length of vector b and e is Gaussian white noise with variance v. The function returns a vector of length t. +// +//The optional parameter n gives the number of dummy x(i) used for initialization, i.e., a sequence of length t+n is generated and x(n+1:t+n) is returned. If n is omitted, n = 100 is used. +//Examples +//a = [1 2 3 4 5]; +//b = [7; 8; 9; 10; 11]; +//v = 10; +//t = 5; +//n = 100; +//arma_rnd (a, b, v, t, n) +//ans = +// +// -1.6176e+05 +// -4.1663e+05 +// -1.0732e+06 +// -2.7648e+06 +// -7.1221e+06 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 5 | rhs > 6) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 5 then + res = callOctave("arma_rnd",a, b, v, t) + + case 6 then + res = callOctave("arma_rnd",a, b, v, t, n) + + end +endfunction diff --git a/macros/cl2bp.sci b/macros/cl2bp.sci new file mode 100644 index 0000000..1069cf0 --- /dev/null +++ b/macros/cl2bp.sci @@ -0,0 +1,47 @@ +function h = cl2bp (m, w1, w2, up, lo, gridsize) +//Constrained L2 bandpass FIR filter design. +//Calling Sequence +//h = cl2bp (m, w1, w2, up, lo, gridsize) +//h = cl2bp (m, w1, w2, up, lo) +//Parameters +//m: degree of cosine polynomial, i.e. the number of output coefficients will be m*2+1 +//w1 and w2: bandpass filter cutoffs in the range 0 <= w1 < w2 <= pi, where pi is the Nyquist frequency +//up: vector of 3 upper bounds for [stopband1, passband, stopband2] +//lo: vector of 3 lower bounds for [stopband1, passband, stopband2] +//gridsize: search grid size; larger values may improve accuracy, but greatly increase calculation time. +//Description +//This is an Octave function. +//Constrained L2 bandpass FIR filter design. Compared to remez, it offers implicit specification of transition bands, a higher likelihood of convergence, and an error criterion combining features of both L2 and Chebyshev approaches. +//Examples +//h = cl2bp(5, 0.3*pi, 0.6*pi, [0.02, 1.02, 0.02], [-0.02, 0.98, -0.02], 2^11) +//h = +// +// 0.038311 +// 0.082289 +// -0.086163 +// -0.226006 +// 0.047851 +// 0.307434 +// 0.047851 +// -0.226006 +// -0.086163 +// 0.082289 +// 0.038311 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 5 | rhs > 6) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 5 then + res = callOctave("cl2bp", m, w1, w2, up, lo) + + case 6 then + res = callOctave("cl2bp", m, w1, w2, up, lo, gridsize) + + end +endfunction diff --git a/macros/cplxreal.sci b/macros/cplxreal.sci index 8443837..a552998 100644 --- a/macros/cplxreal.sci +++ b/macros/cplxreal.sci @@ -14,6 +14,11 @@ function [zc, zr] = cplxreal (z, thresh) //This is an Octave function. //Every complex element of z is expected to have a complex-conjugate elsewhere in z. From the pair of complex-conjugates, the one with the negative imaginary part is removed. //If the magnitude of the imaginary part of an element is less than the thresh, it is declared as real. +//Examples +//[zc, zr] = cplxreal([1 2 3+i 4 3-i 5]) +//zc = 3 + 1i +//zr = +// 1 2 4 5 funcprot(0); lhs = argn(1) rhs = argn(2) diff --git a/macros/fft.sci b/macros/fft1.sci index 0ea54ab..a0a6438 100644 --- a/macros/fft.sci +++ b/macros/fft1.sci @@ -1,4 +1,4 @@ -function res = fft (x, n, dim) +function res = fft1 (x, n, dim) //Calculates the discrete Fourier transform of a matrix using Fast Fourier Transform algorithm. //Calling Sequence //fft (x, n, dim) @@ -20,7 +20,7 @@ function res = fft (x, n, dim) //x = [1 2 3; 4 5 6; 7 8 9] //n = 3 //dim = 2 -//fft (x, n, dim) +//fft1 (x, n, dim) //ans = // // 6.0000 + 0.0000i -1.5000 + 0.8660i -1.5000 - 0.8660i diff --git a/macros/fft2.sci b/macros/fft21.sci index 58cd70d..2f04200 100644 --- a/macros/fft2.sci +++ b/macros/fft21.sci @@ -1,4 +1,4 @@ -function res = fft2 (A, m, n) +function res = fft21 (A, m, n) //Calculates the two-dimensional discrete Fourier transform of A using a Fast Fourier Transform algorithm. //Calling Sequence //fft2 (A, m, n) @@ -15,7 +15,7 @@ function res = fft2 (A, m, n) //x = [1 2 3; 4 5 6; 7 8 9] //m = 4 //n = 4 -//fft2 (A, m, n) +//fft21 (A, m, n) //ans = // // 45 + 0i -6 - 15i 15 + 0i -6 + 15i diff --git a/macros/fftshift1.sci b/macros/fftshift1.sci index d8721cd..9026025 100644 --- a/macros/fftshift1.sci +++ b/macros/fftshift1.sci @@ -1,5 +1,5 @@ function y= fftshift1(X,DIM) -//Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix. +//Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix. //Calling Sequence // fftshift1 (X) // fftshift1 (X, DIM) @@ -8,9 +8,9 @@ function y= fftshift1(X,DIM) //DIM: The optional DIM argument can be used to limit the dimension along which the permutation occurs //Description //This is an Octave function. -//Perform a shift of the vector X, for use with the 'fft' and 'ifft' functions, in order the move the frequency 0 to the center of the vector or matrix. +//Perform a shift of the vector X, for use with the 'fft1' and 'ifft1' functions, in order the move the frequency 0 to the center of the vector or matrix. // -//If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift1 (fft (X))' corresponds to frequencies +//If X is a vector of N elements corresponding to N time samples spaced by dt, then 'fftshift1 (fft1 (X))' corresponds to frequencies // //f = [ -(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df ] // @@ -30,4 +30,4 @@ function y= fftshift1(X,DIM) case 2 then y=callOctave("fftshift",X,DIM); end -endfunction
\ No newline at end of file +endfunction diff --git a/macros/fftw1.sci b/macros/fftw1.sci new file mode 100644 index 0000000..a530017 --- /dev/null +++ b/macros/fftw1.sci @@ -0,0 +1,64 @@ +function res = fftw1(a, b) +//Manage FFTW wisdom data. +//Calling Sequence +// method = fftw ("planner") +//fftw ("planner", method) +//wisdom = fftw ("dwisdom") +//fftw ("dwisdom", wisdom) +//fftw ("threads", nthreads) +//nthreads = fftw ("threads") +//Parameters +//Description +//This is an Octave function. +//Wisdom data can be used to significantly accelerate the calculation of the FFTs, but implies an initial cost in its calculation. When the FFTW libraries are initialized, they read a system wide wisdom +//file (typically in /etc/fftw/wisdom), allowing wisdom to be shared between applications other than Octave. Alternatively, the fftw function can be used to import wisdom. For example, +// +//wisdom = fftw ("dwisdom") +//will save the existing wisdom used by Octave to the string wisdom. This string can then be saved to a file and restored using the save and load commands respectively. This existing wisdom can be re +//imported as follows +// +//fftw ("dwisdom", wisdom) +//If wisdom is an empty string, then the wisdom used is cleared. +// +//During the calculation of Fourier transforms further wisdom is generated. The fashion in which this wisdom is generated is also controlled by the fftw function. There are five different manners in which +//the wisdom can be treated: +// +//"estimate" +//Specifies that no run-time measurement of the optimal means of calculating a particular is performed, and a simple heuristic is used to pick a (probably sub-optimal) plan. The advantage of this method +//is that there is little or no overhead in the generation of the plan, which is appropriate for a Fourier transform that will be calculated once. +// +//"measure" +//In this case a range of algorithms to perform the transform is considered and the best is selected based on their execution time. +// +//"patient" +//Similar to "measure", but a wider range of algorithms is considered. +// +//"exhaustive" +//Like "measure", but all possible algorithms that may be used to treat the transform are considered. +// +//"hybrid" +//As run-time measurement of the algorithm can be expensive, this is a compromise where "measure" is used for transforms up to the size of 8192 and beyond that the "estimate" method is used. +// +//The default method is "estimate". The current method can be queried with +// +//method = fftw ("planner") +//or set by using +// +//fftw ("planner", method) + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 1 | rhs > 2) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 1 then + res = callOctave("fftw",a) + + case 2 then + res = callOctave("fftw",a, b) + end +endfunction diff --git a/macros/ifft.sci b/macros/ifft1.sci index 70688e4..3e94934 100644 --- a/macros/ifft.sci +++ b/macros/ifft1.sci @@ -1,4 +1,4 @@ -function res = ifft (x, n, dim) +function res = ifft1 (x, n, dim) //Calculates the inverse discrete Fourier transform of a matrix using Fast Fourier Transform algorithm. //Calling Sequence //ifft (x, n, dim) @@ -22,7 +22,7 @@ function res = ifft (x, n, dim) //x = [1 2 3; 4 5 6; 7 8 9] //n = 3 //dim = 2 -//ifft (x, n, dim) +//ifft1 (x, n, dim) //ans = // // 2.00000 + 0.00000i -0.50000 - 0.28868i -0.50000 + 0.28868i diff --git a/macros/invfreqs.sci b/macros/invfreqs.sci new file mode 100644 index 0000000..32e732b --- /dev/null +++ b/macros/invfreqs.sci @@ -0,0 +1,96 @@ +function [B,A,C] = invfreqs(H,F,nB,nA,W,iter,tol,trace) +//Fit filter B(s)/A(s)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +//Calling Sequence +//[B,A,C] = invfreqs(H,F,nB,nA,W,iter,tol,trace) +//[B,A,C] = invfreqs(H,F,nB,nA,W) +//[B,A,C] = invfreqs(H,F,nB,nA) +//Parameters +//H: desired complex frequency response. +//F: frequency (must be same length as H). +//nB: order of the numerator polynomial B. +//nA: order of the denominator polynomial A. +//W: vector of weights (must be same length as F). +//Description +//This is an Octave function. +//Fit filter B(s)/A(s)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +//Optionally, the fit-errors can be weighted vs frequency according to the weights W. +//Note: all the guts are in invfreq.m +//Examples +//B = [1/2 1]; +//A = [1 1]; +//w = linspace(0,4,128); +//H = freqs(B,A,w); +//[Bh,Ah, C] = invfreqs(H,w,1,1); +//Bh = +// +// 0.50000 1.00000 +// +//Ah = +// +// 1.0000 1.0000 +// +//C = -3.0964e-15 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 4 | rhs > 8) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 4 then + if(lhs==1) + B = callOctave("invfreqs",H,F,nB,nA) + elseif(lhs==2) + [B, A] = callOctave("invfreqs",H,F,nB,nA) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqs",H,F,nB,nA) + else + error("Wrong number of output argments.") + end + + case 5 then + if(lhs==1) + B = callOctave("invfreqs",H,F,nB,nA,W) + elseif(lhs==2) + [B, A] = callOctave("invfreqs",H,F,nB,nA,W) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqs",H,F,nB,nA,W) + else + error("Wrong number of output argments.") + end + case 6 then + if(lhs==1) + B = callOctave("invfreqs",H,F,nB,nA,W,iter) + elseif(lhs==2) + [B, A] = callOctave("invfreqs",H,F,nB,nA,W,iter) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqs",H,F,nB,nA,W,iter) + else + error("Wrong number of output argments.") + end + case 7 then + if(lhs==1) + B = callOctave("invfreqs",H,F,nB,nA,W,iter,tol) + elseif(lhs==2) + [B, A] = callOctave("invfreqs",H,F,nB,nA,W,iter,tol) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqs",H,F,nB,nA,W,iter,tol) + else + error("Wrong number of output argments.") + end + case 8 then + if(lhs==1) + B = callOctave("invfreqs",H,F,nB,nA,W,iter,tol,trace) + elseif(lhs==2) + [B, A] = callOctave("invfreqs",H,F,nB,nA,W,iter,tol,trace) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqs",H,F,nB,nA,W,iter,tol,trace) + else + error("Wrong number of output argments.") + end + end +endfunction + diff --git a/macros/invfreqz.sci b/macros/invfreqz.sci new file mode 100644 index 0000000..d051499 --- /dev/null +++ b/macros/invfreqz.sci @@ -0,0 +1,94 @@ +function [B,A,C] = invfreqz(H,F,nB,nA,W,iter,tol,trace) +//Fit filter B(z)/A(z)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +//Calling Sequence +//[B,A,C] = invfreqz(H,F,nB,nA,W,iter,tol,trace) +//[B,A,C] = invfreqz(H,F,nB,nA,W) +//[B,A,C] = invfreqz(H,F,nB,nA) +//Parameters +//H: desired complex frequency response. +//F: frequency (must be same length as H). +//nB: order of the numerator polynomial B. +//nA: order of the denominator polynomial A. +//W: vector of weights (must be same length as F). +//Description +//This is an Octave function. +//Fit filter B(z)/A(z)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. +//Optionally, the fit-errors can be weighted vs frequency according to the weights W. +//Note: all the guts are in invfreq.m +//Examples +//[B,A] = butter(4,1/4); +//[H,F] = freqz(B,A); +//[Bh,Ah,C] = invfreq(H,F,4,4) +//Bh = +// +// 0.010209 0.040838 0.061257 0.040838 0.010209 +// +//Ah = +// +// 1.00000 -1.96843 1.73586 -0.72447 0.12039 +// +//C = -7.7065e-15 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 4 | rhs > 8) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 4 then + if(lhs==1) + B = callOctave("invfreqz",H,F,nB,nA) + elseif(lhs==2) + [B, A] = callOctave("invfreqz",H,F,nB,nA) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqz",H,F,nB,nA) + else + error("Wrong number of output argments.") + end + + case 5 then + if(lhs==1) + B = callOctave("invfreqz",H,F,nB,nA,W) + elseif(lhs==2) + [B, A] = callOctave("invfreqz",H,F,nB,nA,W) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqz",H,F,nB,nA,W) + else + error("Wrong number of output argments.") + end + case 6 then + if(lhs==1) + B = callOctave("invfreqz",H,F,nB,nA,W,iter) + elseif(lhs==2) + [B, A] = callOctave("invfreqz",H,F,nB,nA,W,iter) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqz",H,F,nB,nA,W,iter) + else + error("Wrong number of output argments.") + end + case 7 then + if(lhs==1) + B = callOctave("invfreqz",H,F,nB,nA,W,iter,tol) + elseif(lhs==2) + [B, A] = callOctave("invfreqz",H,F,nB,nA,W,iter,tol) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqz",H,F,nB,nA,W,iter,tol) + else + error("Wrong number of output argments.") + end + case 8 then + if(lhs==1) + B = callOctave("invfreqz",H,F,nB,nA,W,iter,tol,trace) + elseif(lhs==2) + [B, A] = callOctave("invfreqz",H,F,nB,nA,W,iter,tol,trace) + elseif(lhs==3) + [B, A, C] = callOctave("invfreqz",H,F,nB,nA,W,iter,tol,trace) + else + error("Wrong number of output argments.") + end + end +endfunction + diff --git a/macros/kaiserord.sci b/macros/kaiserord.sci new file mode 100644 index 0000000..47f4105 --- /dev/null +++ b/macros/kaiserord.sci @@ -0,0 +1,70 @@ +function [n, Wn, beta, ftype] = kaiserord (f, m, dev, fs) +//Return the parameters needed to produce a filter of the desired specification from a Kaiser window. +//Calling Sequence +//[n, Wn, beta, ftype] = kaiserord (f, m, dev, fs) +//[…] = kaiserord (f, m, dev, fs) +//[…] = kaiserord (f, m, dev) +//Parameters +//f: Pairs of frequency band edges. +//m: Magnitude response for each band. +//dev: Deviation of the filter. +//fs: Sampling rate. +//Description +//This is an Octave function. +//The vector f contains pairs of frequency band edges in the range [0,1]. The vector m specifies the magnitude response for each band. The values of m must be zero for all stop bands and must have the +//same magnitude for all pass bands. The deviation of the filter dev can be specified as a scalar or a vector of the same length as m. The optional sampling rate fs can be used to indicate that f is in +//Hz in the range [0,fs/2]. +// +//The returned value n is the required order of the filter (the length of the filter minus 1). The vector Wn contains the band edges of the filter suitable for passing to fir1. The value beta is the +//parameter of the Kaiser window of length n+1 to shape the filter. The string ftype contains the type of filter to specify to fir1. +// +//The Kaiser window parameters n and beta are computed from the relation between ripple (A=-20*log10(dev)) and transition width (dw in radians) discovered empirically by Kaiser: +// +// +// / 0.1102(A-8.7) A > 50 +// beta = | 0.5842(A-21)^0.4 + 0.07886(A-21) 21 <= A <= 50 +// \ 0.0 A < 21 +// +// n = (A-8)/(2.285 dw) +//Examples +//[n, w, beta, ftype] = kaiserord ([1000, 1200], [1, 0], [0.05, 0.05], 11025) +//n = 1 +//w = 1100 +//beta = 1.5099 +//ftype = low + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 3 | rhs > 4) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 3 then + if(lhs==1) + n = callOctave("kaiserord",f, m, dev) + elseif(lhs==2) + [n, Wn] = callOctave("kaiserord",f, m, dev) + elseif(lhs==3) + [n, Wn, beta] = callOctave("kaiserord",f, m, dev) + elseif(lhs==4) + [n, Wn, beta, ftype] = callOctave("kaiserord",f, m, dev) + else + error("Wrong number of output argments.") + end + case 4 then + if(lhs==1) + n = callOctave("kaiserord",f, m, dev, fs) + elseif(lhs==2) + [n, Wn] = callOctave("kaiserord",f, m, dev, fs) + elseif(lhs==3) + [n, Wn, beta] = callOctave("kaiserord",f, m, dev, fs) + elseif(lhs==4) + [n, Wn, beta, ftype] = callOctave("kaiserord",f, m, dev, fs) + else + error("Wrong number of output argments.") + end + end +endfunction Binary files differdiff --git a/macros/names b/macros/names index 001dba2..800df1a 100644 --- a/macros/names +++ b/macros/names @@ -3,9 +3,11 @@ ac2rc arParEst ar_psd arburg +arch_rnd arch_test arch_fit arcov +arma_rnd armcov aryule autoreg_matrix @@ -37,6 +39,7 @@ cheby1 cheby2 check chirp +cl2bp clustersegment cmorwavf cohere @@ -66,10 +69,11 @@ ellipord enbw eqtflength falltime -fft -fft2 +fft1 +fft21 fftconv fftfilt +fftw1 fftn fftshift1 fht @@ -109,8 +113,8 @@ icceps idct1 idct2 idst1 -ifft -ifft2 +ifft1 +ifft21 ifftn ifftshift1 ifht @@ -122,6 +126,8 @@ impzlength interp intfilt invfreq +invfreqs +invfreqz invimpinvar is2rc isallpass @@ -131,6 +137,7 @@ ismaxphase isminphase isstable kaiser +kaiserord lar2rc latc2tf latcfilt @@ -155,6 +162,7 @@ ncauer nnls nuttallwin parzenwin +pburg pchip pchips peak2peak @@ -180,7 +188,9 @@ pulseperiod pulsesep pulsewidth pulstran +pyulear pwelch +qp_kaiser rc2ac rc2is rc2lar @@ -204,6 +214,7 @@ sawtooth schtrig schurrc seqperiod +sftrans sgolay sgolayfilt shanwavf @@ -232,6 +243,7 @@ synthesis tf2sos tf2zp tf2zpk +tfestimate tfe transpose trial_iirlp2mb @@ -254,6 +266,7 @@ welchwin window wkeep wrev +xcorr1 xcorr2 xcov1 yulewalker diff --git a/macros/pburg.sci b/macros/pburg.sci new file mode 100644 index 0000000..78198ed --- /dev/null +++ b/macros/pburg.sci @@ -0,0 +1,93 @@ +function [psd,f_out] = pburg(x,poles,freq,Fs,range,method,plot_type,criterion) +//Calculate Burg maximum-entropy power spectral density. +//Calling Sequence +//[psd,f_out] = pburg(x,poles,freq,Fs,range,method,plot_type,criterion) +//All but the first two arguments are optional and may be empty. +//Parameters +// x: [vector] sampled data +// poles: [integer scalar] required number of poles of the AR model +// freq: [real vector] frequencies at which power spectral density is calculated [integer scalar] number of uniformly distributed frequency values at which spectral density is calculated. [default=256] +// Fs: [real scalar] sampling frequency (Hertz) [default=1] +// range: 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum. 'whole', 'twosided' : frequency range of the spectrum is -sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'. +// method: 'fft': use FFT to calculate power spectral density. 'poly': calculate spectral density as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2. +// plot_type: 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db' specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. +// criterion: [optional string arg] model-selection criterion. Limits the number of poles so that spurious poles are not added when the whitened data has no more information in it (see Kay & Marple, 1981). Recognized values are 'AKICc' -- approximate corrected Kullback information criterion (recommended), 'KIC' -- Kullback information criterion 'AICc' -- corrected Akaike information criterion 'AIC' -- Akaike information criterion 'FPE' -- final prediction error" criterion The default is to NOT use a model-selection criterion. +//Description +//This function is being called from Octave +//This function is a wrapper for arburg and ar_psd. +//The functions "arburg" and "ar_psd" do all the work. +//See "help arburg" and "help ar_psd" for further details. +//Examples +//a = [1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746]; +//[psd,f_out] = pburg(a,2); + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 2 | rhs > 8) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 2 then + if(lhs==1) + psd = callOctave("pburg",x,poless) + elseif(lhs==2) + [psd,f_out] = callOctave("pburg",x,poles) + else + error("Wrong number of output argments.") + end + + case 3 then + if(lhs==1) + psd = callOctave("pburg",x,poles,freq) + elseif(lhs==2) + [psd,f_out] = callOctave("pburg",x,poles,freq) + else + error("Wrong number of output argments.") + end + case 4 then + if(lhs==1) + psd = callOctave("pburg",x,poles,freq,Fs) + elseif(lhs==2) + [psd,f_out] = callOctave("pburg",x,poles,freq,Fs) + else + error("Wrong number of output argments.") + end + case 5 then + if(lhs==1) + psd = callOctave("pburg",x,poles,freq,Fs,range) + elseif(lhs==2) + [psd,f_out] = callOctave("pburg",x,poles,freq,Fs,range) + else + error("Wrong number of output argments.") + end + case 6 then + if(lhs==1) + psd = callOctave("pburg",x,poles,freq,Fs,range,method) + elseif(lhs==2) + [psd,f_out] = callOctave("pburg",x,poles,freq,Fs,range,method) + else + error("Wrong number of output argments.") + end + case 7 then + if(lhs==1) + psd = callOctave("pburg",x,poles,freq,Fs,range,method,plot_type) + elseif(lhs==2) + [psd,f_out] = callOctave("pburg",x,poles,freq,Fs,range,method,plot_type) + else + error("Wrong number of output argments.") + end + case 8 then + if(lhs==1) + psd = callOctave("pburg",x,poles,freq,Fs,range,method,plot_type,criterion) + elseif(lhs==2) + [psd,f_out] = callOctave("pburg",x,poles,freq,Fs,range,method,plot_type,criterion) + else + error("Wrong number of output argments.") + end + end +endfunction + + diff --git a/macros/pyulear.sci b/macros/pyulear.sci new file mode 100644 index 0000000..55278d8 --- /dev/null +++ b/macros/pyulear.sci @@ -0,0 +1,85 @@ +function [psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type) + +//Calculates a Yule-Walker autoregressive (all-pole) model of the data "x" and computes the power spectrum of the model. +//Calling Sequence +//[psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type) +//All but the first two arguments are optional and may be empty. +//Parameters +// x: [vector] sampled data +// poles: [integer scalar] required number of poles of the AR model +// freq: [real vector] frequencies at which power spectral density is calculated [integer scalar] number of uniformly distributed frequency values at which spectral density is calculated. [default=256] +// Fs: [real scalar] sampling frequency (Hertz) [default=1] +// range: 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum. 'whole', 'twosided' : frequency range of the spectrum is -sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'. +// method: 'fft': use FFT to calculate power spectral density. 'poly': calculate spectral density as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2. +// plot_type: 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db' specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. + +//Description +//This function is being called from Octave. +//This function is a wrapper for aryule and ar_psd. +//See "help aryule" and "help ar_psd" for further details. +//Examples +//a = [1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746]; +//[psd,f_out] = pyulear(a,2); + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 2 | rhs > 7) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 2 then + if(lhs==1) + psd = callOctave("pyulear",x,poless) + elseif(lhs==2) + [psd,f_out] = callOctave("pyulear",x,poles) + else + error("Wrong number of output argments.") + end + + case 3 then + if(lhs==1) + psd = callOctave("pyulear",x,poles,freq) + elseif(lhs==2) + [psd,f_out] = callOctave("pyulear",x,poles,freq) + else + error("Wrong number of output argments.") + end + case 4 then + if(lhs==1) + psd = callOctave("pyulear",x,poles,freq,Fs) + elseif(lhs==2) + [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs) + else + error("Wrong number of output argments.") + end + case 5 then + if(lhs==1) + psd = callOctave("pyulear",x,poles,freq,Fs,range) + elseif(lhs==2) + [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs,range) + else + error("Wrong number of output argments.") + end + case 6 then + if(lhs==1) + psd = callOctave("pyulear",x,poles,freq,Fs,range,method) + elseif(lhs==2) + [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs,range,method) + else + error("Wrong number of output argments.") + end + case 7 then + if(lhs==1) + psd = callOctave("pyulear",x,poles,freq,Fs,range,method,plot_type) + elseif(lhs==2) + [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs,range,method,plot_type) + else + error("Wrong number of output argments.") + end + + end +endfunction + diff --git a/macros/qp_kaiser.sci b/macros/qp_kaiser.sci new file mode 100644 index 0000000..820fce8 --- /dev/null +++ b/macros/qp_kaiser.sci @@ -0,0 +1,37 @@ +function res = qp_kaiser (nb, at, linear) +//Computes a finite impulse response (FIR) filter for use with a quasi-perfect reconstruction polyphase-network filter bank. +//Calling Sequence +//qp_kaiser (nb, at, linear) +//qp_kaiser (nb, at) +//Parameters +//nb: Number of bands +//at: Attenuation +//linear: When not zero, minimum-phase calculation is omitted. +//Description +//This is an Octave function. +//This version utilizes a Kaiser window to shape the frequency response of the designed filter. Tha number nb of bands and the desired attenuation at in the stop-band are given as parameters. +// +//The Kaiser window is multiplied by the ideal impulse response h(n)=a.sinc(a.n) and converted to its minimum-phase version by means of a Hilbert transform. +//Examples +// qp_kaiser (5, 5, 1) +//ans = +// +// 0.11591 0.25606 0.25606 0.25606 0.11591 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 2 | rhs > 3) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 2 then + res = callOctave("qp_kaiser", nb, at) + + case 3 then + res = callOctave("qp_kaiser", nb, at, linear) + + end +endfunction diff --git a/macros/sftrans.sci b/macros/sftrans.sci new file mode 100644 index 0000000..916d44d --- /dev/null +++ b/macros/sftrans.sci @@ -0,0 +1,74 @@ +function [Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop) +//Transform band edges of a generic lowpass filter (cutoff at W=1) represented in splane zero-pole-gain form. +//Calling Sequence +//[Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop) +//[Sz, Sp] = sftrans (Sz, Sp, Sg, W, stop) +//[Sz] = sftrans (Sz, Sp, Sg, W, stop) +//Parameters +//Sz: Zeros. +//Sp: Poles. +//Sg: Gain. +//W: Edge of target filter. +//stop: True for high pass and band stop filters or false for low pass and band pass filters. +//Description +//This is an Octave function. +//Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros +//individually. The following table summarizes the transformation: +// +// Transform Zero at x Pole at x +// ---------------- ------------------------- ------------------------ +// Low Pass zero: Fc x/C pole: Fc x/C +// S -> C S/Fc gain: C/Fc gain: Fc/C +// ---------------- ------------------------- ------------------------ +// High Pass zero: Fc C/x pole: Fc C/x +// S -> C Fc/S pole: 0 zero: 0 +// gain: -x gain: -1/x +// ---------------- ------------------------- ------------------------ +// Band Pass zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl) +// S^2+FhFl pole: 0 zero: 0 +// S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C +// S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2 +// ---------------- ------------------------- ------------------------ +// Band Stop zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl) +// S(Fh-Fl) pole: +-sqrt(-FhFl) zero: +-sqrt(-FhFl) +// S -> C -------- gain: -x gain: -1/x +// S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2 +// ---------------- ------------------------- ------------------------ +// Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT) +// 2 z-1 pole: -1 zero: -1 +// S -> - --- gain: (2-xT)/T gain: (2-xT)/T +// T z+1 +// ---------------- ------------------------- ------------------------ +// +//where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious +//algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form: +// +// H(S)=g prod(S-Xi)/prod(S-Xj) +//Examples +//[Sz, Sp, Sg] = sftrans (5, 10, 15, 20, 30) +//Sz = 4 +//Sp = 2 +//Sg = 7.5000 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 5 | rhs > 5) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 5 then + if(lhs==1) + Sz = callOctave("sftrans",Sz, Sp, Sg, W, stop) + elseif(lhs==2) + [Sz, Sp] = callOctave("sftrans",Sz, Sp, Sg, W, stop) + elseif(lhs==3) + [Sz, Sp, Sg] = callOctave("sftrans",Sz, Sp, Sg, W, stop) + else + error("Wrong number of output argments.") + end + + end +endfunction diff --git a/macros/tfestimate.sci b/macros/tfestimate.sci new file mode 100644 index 0000000..e52faf5 --- /dev/null +++ b/macros/tfestimate.sci @@ -0,0 +1,93 @@ +function [Pxx, freq] = tfestimate(x, y, window, overlap, Nfft, Fs, range) + +//Estimate transfer function of system with input x and output y. Use the Welch (1967) periodogram/FFT method. +//Calling Sequence +//tfestimate (x, y, window, overlap, Nfft, Fs, range) +//[Pxx, freq] = tfestimate (…) +//Parameters +//x: Input. +//y: Output. +//window: [real vector] of window-function values between 0 and 1; the data segment has the same length as the window. Default window shape is Hamming. [integer scalar] length of each data segment. The default value is window=sqrt(length(x)) rounded up to the nearest integer power of 2; see 'sloppy' argument. +// overlap: [real scalar] segment overlap expressed as a multiple of window or segment length. 0 <= overlap < 1, The default is overlap=0.5 . +// Nfft: [integer scalar] Length of FFT. The default is the length of the "window" vector or has the same value as the scalar "window" argument. If Nfft is larger than the segment length, "seg_len", the data segment is padded with "Nfft-seg_len" zeros. The default is no padding. Nfft values smaller than the length of the data segment (or window) are ignored silently. +// Fs: [real scalar] sampling frequency (Hertz); default=1.0 +// range: 'half', 'onesided' : frequency range of the spectrum is zero up to but not including Fs/2. Power from negative frequencies is added to the positive side of the spectrum, but not at zero or Nyquist (Fs/2) frequencies. This keeps power equal in time and spectral domains. See reference [2]. 'whole', 'twosided' : frequency range of the spectrum is -Fs/2 to Fs/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If data (x and y) are real, the default range is 'half', otherwise default range is 'whole'. +//Description +//This function is being called from Octave. +//Estimate transfer function of system with input x and output y. Use the Welch (1967) periodogram/FFT method. +//Examples +//[Pxx, freq]=tfestimate ([1 2 3], [4 5 6]) +//Pxx = +// +// 1.7500 + 0.0000i +// 1.5947 + 0.3826i +// 1.2824 + 0.0000i +// +//freq = +// +// 0.00000 +// 0.25000 +// 0.50000 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 2 | rhs > 7) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 2 then + if(lhs==1) + Pxx = callOctave("tfestimate",x,y) + elseif(lhs==2) + [Pxx, freq] = callOctave("tfestimate",x,y) + else + error("Wrong number of output argments.") + end + + case 3 then + if(lhs==1) + Pxx = callOctave("tfestimate",x, y, window) + elseif(lhs==2) + [Pxx, freq] = callOctave("tfestimate",x, y, window) + else + error("Wrong number of output argments.") + end + case 4 then + if(lhs==1) + Pxx = callOctave("tfestimate",x, y, window, overlap) + elseif(lhs==2) + [Pxx, freq] = callOctave("tfestimate",x, y, window, overlap) + else + error("Wrong number of output argments.") + end + case 5 then + if(lhs==1) + Pxx = callOctave("tfestimate",x, y, window, overlap, Nfft) + elseif(lhs==2) + [Pxx, freq] = callOctave("tfestimate",x, y, window, overlap, Nfft) + else + error("Wrong number of output argments.") + end + case 6 then + if(lhs==1) + Pxx = callOctave("tfestimate",x, y, window, overlap, Nfft, Fs) + elseif(lhs==2) + [Pxx, freq] = callOctave("tfestimate",x, y, window, overlap, Nfft, Fs) + else + error("Wrong number of output argments.") + end + case 7 then + if(lhs==1) + Pxx = callOctave("tfestimate",x, y, window, overlap, Nfft, Fs, range) + elseif(lhs==2) + [Pxx, freq] = callOctave("tfestimate",x, y, window, overlap, Nfft, Fs, range) + else + error("Wrong number of output argments.") + end + end +endfunction + + diff --git a/macros/xcorr1.sci b/macros/xcorr1.sci new file mode 100644 index 0000000..6ae884d --- /dev/null +++ b/macros/xcorr1.sci @@ -0,0 +1,86 @@ +function [R, lag] = xcorr1 (X, Y, maxlag, scale) +//Estimates the cross-correlation. +//Calling Sequence +//[R, lag] = xcorr1 (X, Y, maxlag, scale) +//[R, lag] = xcorr1 (X, Y, maxlag) +//[R, lag] = xcorr1 (X, Y) +//Parameters +//X: [non-empty; real or complex; vector or matrix] data. +//Y: [real or complex vector] data. +// If X is a matrix (not a vector), Y must be omitted. Y may be omitted if X is a vector; in this case xcorr estimates the autocorrelation of X. +//maxlag: [integer scalar] maximum correlation lag If omitted, the default value is N-1, where N is the greater of the lengths of X and Y or, if X is a matrix, the number of rows in X. +//scale: [character string] specifies the type of scaling applied to the correlation vector (or matrix). is one of: +// ‘none’ - return the unscaled correlation, R, +//‘biased’ - return the biased average, R/N, +//‘unbiased’ - return the unbiased average, R(k)/(N-|k|), +//‘coeff’ - return the correlation coefficient, R/(rms(x).rms(y)), where "k" is the lag, and "N" is the length of X. If omitted, the default value is "none". If Y is supplied but does not have the same +// length as X, scale must be "none". +//Description +//This is an Octave function. +//Estimate the cross correlation R_xy(k) of vector arguments X and Y or, if Y is omitted, estimate autocorrelation R_xx(k) of vector X, for a range of lags k specified by argument "maxlag". If X is a +//matrix, each column of X is correlated with itself and every other column. +// +//The cross-correlation estimate between vectors "x" and "y" (of length N) for lag "k" is given by +// +// N +// R_xy(k) = sum x_{i+k} conj(y_i), +// i=1 +// +//where data not provided (for example x(-1), y(N+1)) is zero. Note the definition of cross-correlation given above. To compute a cross-correlation consistent with the field of statistics, see xcov. +//Examples +//[R, lag] = xcorr1 ( [5 5], [2 2], 2, 'biased' ) +// +//R = +// +// 0 5 10 5 0 +// +//lag = +// +// -2 -1 0 1 2 + +funcprot(0); +lhs = argn(1) +rhs = argn(2) +if (rhs < 1 | rhs > 4) +error("Wrong number of input arguments.") +end + +select(rhs) + + case 2 then + if(lhs==1) + R = callOctave("xcorr", X) + elseif(lhs==2) + [R, lag] = callOctave("xcorr", X) + else + error("Wrong number of output argments.") + end + + case 2 then + if(lhs==1) + R = callOctave("xcorr", X, Y) + elseif(lhs==2) + [R, lag] = callOctave("xcorr", X, Y) + else + error("Wrong number of output argments.") + end + + case 3 then + if(lhs==1) + R = callOctave("xcorr", X, Y, maxlag) + elseif(lhs==2) + [R, lag] = callOctave("xcorr", X, Y, maxlag) + else + error("Wrong number of output argments.") + end + case 4 then + if(lhs==1) + R = callOctave("xcorr", X, Y, maxlag, scale) + elseif(lhs==2) + [R, lag] = callOctave("xcorr", X, Y, maxlag, scale) + else + error("Wrong number of output argments.") + end + + end +endfunction |