1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from intfminunc.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="intfminunc" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>intfminunc</refname>
<refpurpose>Solves an unconstrainted multi-variable mixed integer non linear programming optimization problem</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = intfminunc(f,x0)
xopt = intfminunc(f,x0,intcon)
xopt = intfminunc(f,x0,intcon,options)
[xopt,fopt] = intfminunc(.....)
[xopt,fopt,exitflag]= intfminunc(.....)
[xopt,fopt,exitflag,gradient,hessian]= intfminunc(.....)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Input Parameters</title>
<variablelist>
<varlistentry><term>f :</term>
<listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables.</para></listitem></varlistentry>
<varlistentry><term>intcon :</term>
<listitem><para> A vector of integers, representing the variables that are constrained to be integers.</para></listitem></varlistentry>
<varlistentry><term>options :</term>
<listitem><para> A list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title> Outputs</title>
<variablelist>
<varlistentry><term>xopt :</term>
<listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> A double, containing the the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
<varlistentry><term>gradient :</term>
<listitem><para> A vector of doubles, containing the objective's gradient of the solution.</para></listitem></varlistentry>
<varlistentry><term>hessian :</term>
<listitem><para> A matrix of doubles, containing the Lagrangian's hessian of the solution.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a multi-variable mixed integer non linear programming unconstrained optimization problem specified by :
Find the minimum of f(x) such that
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& f(x)
& x_{i} \in \!\, \mathbb{Z}, i \in \!\, I
\end{eqnarray}
</latex>
</para>
<para>
intfminunc calls Bonmin, which is an optimization library written in C++, to solve the bound optimization problem.
</para>
<para>
<title>Options</title>
The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
</para>
<para>
options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
<itemizedlist>
<listitem>IntegerTolerance : A Scalar, a number with that value of an integer is considered integer.</listitem>
<listitem>MaxNodes : A Scalar, containing the maximum number of nodes that the solver should search.</listitem>
<listitem>CpuTime : A scalar, specifying the maximum amount of CPU Time in seconds that the solver should take.</listitem>
<listitem>AllowableGap : A scalar, that specifies the gap between the computed solution and the the objective value of the best known solution stop, at which the tree search can be stopped.</listitem>
<listitem>MaxIter : A scalar, specifying the maximum number of iterations that the solver should take.</listitem>
<listitem>gradobj : A string, to turn on or off the user supplied objective gradient.</listitem>
<listitem>hessian : A scalar, to turn on or off the user supplied objective hessian.</listitem>
</itemizedlist>
The default values for the various items are given as:
</para>
<para>
options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
</para>
<para>
</para>
<para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>0 : Optimal Solution Found </listitem>
<listitem>1 : InFeasible Solution.</listitem>
<listitem>2 : Objective Function is Continuous Unbounded.</listitem>
<listitem>3 : Limit Exceeded.</listitem>
<listitem>4 : User Interrupt.</listitem>
<listitem>5 : MINLP Error.</listitem>
</itemizedlist>
</para>
<para>
For more details on exitflag, see the Bonmin documentation which can be found on http://www.coin-or.org/Bonmin
</para>
<para>
</para>
</refsection>
<para>
A few examples displaying the various functionalities of intfminunc have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
</para>
<refsection>
<title>Example</title>
<para>
We begin with the minimization of a simple non-linear function.
</para>
<para>
Find x in R^2 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) = x_{1}^{2} + x_{2}^{2}
\end{eqnarray}\\
\text{With integer constraints as: } \\
\begin{eqnarray}
\begin{array}{c}
[1] \\
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 1:
//Objective function to be minimised
function y= f(x)
y= x(1)^2 + x(2)^2;
endfunction
//Starting point
x0=[2,1];
intcon = [1];
[xopt,fopt]=intfminunc(f,x0,intcon)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
We now look at the Rosenbrock function, a non-convex performance test problem for optimization routines. We use this example to illustrate how we can enhance the functionality of intfminunc by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 2. We also set solver parameters using the options.
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) = 100\boldsymbol{\cdot} (x_{2} - x_{1}^{2})^{2} + (1-x_{1})^{2}
\end{eqnarray}\\
\text{With integer constraints as: } \\
\begin{eqnarray}
\begin{array}{c}
[2] \\
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
///Example 2:
//Objective function to be minimised
function y= f(x)
y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
endfunction
//Starting point
x0=[-1,2];
intcon = [2]
//Options
options=list("MaxIter", [1500], "CpuTime", [500]);
//Calling
[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
Unbounded Problems: Find x in R^2 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
f(x) = -x_{1}^{2} - x_{2}^{2}
\end{eqnarray}\\
\text{With integer constraints as: } \\
\begin{eqnarray}
\begin{array}{c}
[1] \\
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//The below problem is an unbounded problem:
//Find x in R^2 such that the below function is minimum
//f = - x1^2 - x2^2
//Objective function to be minimised
function [y,g,h] = f(x)
y = -x(1)^2 - x(2)^2;
g = [-2*x(1),-2*x(2)];
h = [-2,0;0,-2];
endfunction
//Starting point
x0=[2,1];
intcon = [1]
options = list("gradobj","ON","hessian","on");
[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
]]></programlisting>
</refsection>
</refentry>
|