// Copyright (C) 2004, 2008 International Business Machines and others. // All Rights Reserved. // This code is published under the Eclipse Public License. // // $Id: IpMatrix.hpp 2472 2014-04-05 17:47:20Z stefan $ // // Authors: Carl Laird, Andreas Waechter IBM 2004-08-13 #ifndef __IPMATRIX_HPP__ #define __IPMATRIX_HPP__ #include "IpVector.hpp" namespace Ipopt { /* forward declarations */ class MatrixSpace; /** Matrix Base Class. This is the base class for all derived matrix * types. All Matrices, such as Jacobian and Hessian matrices, as * well as possibly the iteration matrices needed for the step * computation, are of this type. * * Deriving from Matrix: Overload the protected XXX_Impl method. */ class Matrix : public TaggedObject { public: /** @name Constructor/Destructor */ //@{ /** Constructor. It has to be given a pointer to the * corresponding MatrixSpace. */ Matrix(const MatrixSpace* owner_space) : TaggedObject(), owner_space_(owner_space), valid_cache_tag_(0) {} /** Destructor */ virtual ~Matrix() {} //@} /**@name Operations of the Matrix on a Vector */ //@{ /** Matrix-vector multiply. Computes y = alpha * Matrix * x + * beta * y. Do not overload. Overload MultVectorImpl instead. */ void MultVector(Number alpha, const Vector& x, Number beta, Vector& y) const { MultVectorImpl(alpha, x, beta, y); } /** Matrix(transpose) vector multiply. Computes y = alpha * * Matrix^T * x + beta * y. Do not overload. Overload * TransMultVectorImpl instead. */ void TransMultVector(Number alpha, const Vector& x, Number beta, Vector& y) const { TransMultVectorImpl(alpha, x, beta, y); } //@} /** @name Methods for specialized operations. A prototype * implementation is provided, but for efficient implementation * those should be specially implemented. */ //@{ /** X = X + alpha*(Matrix S^{-1} Z). Should be implemented * efficiently for the ExansionMatrix */ void AddMSinvZ(Number alpha, const Vector& S, const Vector& Z, Vector& X) const; /** X = S^{-1} (r + alpha*Z*M^Td). Should be implemented * efficiently for the ExansionMatrix */ void SinvBlrmZMTdBr(Number alpha, const Vector& S, const Vector& R, const Vector& Z, const Vector& D, Vector& X) const; //@} /** Method for determining if all stored numbers are valid (i.e., * no Inf or Nan). */ bool HasValidNumbers() const; /** @name Information about the size of the matrix */ //@{ /** Number of rows */ inline Index NRows() const; /** Number of columns */ inline Index NCols() const; //@} /** @name Norms of the individual rows and columns */ //@{ /** Compute the max-norm of the rows in the matrix. The result is * stored in rows_norms. The vector is assumed to be initialized * of init is false. */ void ComputeRowAMax(Vector& rows_norms, bool init=true) const { DBG_ASSERT(NRows() == rows_norms.Dim()); if (init) rows_norms.Set(0.); ComputeRowAMaxImpl(rows_norms, init); } /** Compute the max-norm of the columns in the matrix. The result * is stored in cols_norms The vector is assumed to be initialized * of init is false. */ void ComputeColAMax(Vector& cols_norms, bool init=true) const { DBG_ASSERT(NCols() == cols_norms.Dim()); if (init) cols_norms.Set(0.); ComputeColAMaxImpl(cols_norms, init); } //@} /** Print detailed information about the matrix. Do not overload. * Overload PrintImpl instead. */ //@{ virtual void Print(SmartPtr jnlst, EJournalLevel level, EJournalCategory category, const std::string& name, Index indent=0, const std::string& prefix="") const; virtual void Print(const Journalist& jnlst, EJournalLevel level, EJournalCategory category, const std::string& name, Index indent=0, const std::string& prefix="") const; //@} /** Return the owner MatrixSpace*/ inline SmartPtr OwnerSpace() const; protected: /** @name implementation methods (derived classes MUST * overload these pure virtual protected methods. */ //@{ /** Matrix-vector multiply. Computes y = alpha * Matrix * x + * beta * y */ virtual void MultVectorImpl(Number alpha, const Vector& x, Number beta, Vector& y) const =0; /** Matrix(transpose) vector multiply. * Computes y = alpha * Matrix^T * x + beta * y */ virtual void TransMultVectorImpl(Number alpha, const Vector& x, Number beta, Vector& y) const =0; /** X = X + alpha*(Matrix S^{-1} Z). Prototype for this * specialize method is provided, but for efficient * implementation it should be overloaded for the expansion matrix. */ virtual void AddMSinvZImpl(Number alpha, const Vector& S, const Vector& Z, Vector& X) const; /** X = S^{-1} (r + alpha*Z*M^Td). Should be implemented * efficiently for the ExpansionMatrix. */ virtual void SinvBlrmZMTdBrImpl(Number alpha, const Vector& S, const Vector& R, const Vector& Z, const Vector& D, Vector& X) const; /** Method for determining if all stored numbers are valid (i.e., * no Inf or Nan). A default implementation always returning true * is provided, but if possible it should be implemented. */ virtual bool HasValidNumbersImpl() const { return true; } /** Compute the max-norm of the rows in the matrix. The result is * stored in rows_norms. The vector is assumed to be * initialized. */ virtual void ComputeRowAMaxImpl(Vector& rows_norms, bool init) const = 0; /** Compute the max-norm of the columns in the matrix. The result * is stored in cols_norms. The vector is assumed to be * initialized. */ virtual void ComputeColAMaxImpl(Vector& cols_norms, bool init) const = 0; /** Print detailed information about the matrix. */ virtual void PrintImpl(const Journalist& jnlst, EJournalLevel level, EJournalCategory category, const std::string& name, Index indent, const std::string& prefix) const =0; //@} private: /**@name Default Compiler Generated Methods * (Hidden to avoid implicit creation/calling). * These methods are not implemented and * we do not want the compiler to implement * them for us, so we declare them private * and do not define them. This ensures that * they will not be implicitly created/called. */ //@{ /** default constructor */ Matrix(); /** Copy constructor */ Matrix(const Matrix&); /** Overloaded Equals Operator */ Matrix& operator=(const Matrix&); //@} const SmartPtr owner_space_; /**@name CachedResults data members */ //@{ mutable TaggedObject::Tag valid_cache_tag_; mutable bool cached_valid_; //@} }; /** MatrixSpace base class, corresponding to the Matrix base class. * For each Matrix implementation, a corresponding MatrixSpace has * to be implemented. A MatrixSpace is able to create new Matrices * of a specific type. The MatrixSpace should also store * information that is common to all Matrices of that type. For * example, the dimensions of a Matrix is stored in the MatrixSpace * base class. */ class MatrixSpace : public ReferencedObject { public: /** @name Constructors/Destructors */ //@{ /** Constructor, given the number rows and columns of all matrices * generated by this MatrixSpace. */ MatrixSpace(Index nRows, Index nCols) : nRows_(nRows), nCols_(nCols) {} /** Destructor */ virtual ~MatrixSpace() {} //@} /** Pure virtual method for creating a new Matrix of the * corresponding type. */ virtual Matrix* MakeNew() const=0; /** Accessor function for the number of rows. */ Index NRows() const { return nRows_; } /** Accessor function for the number of columns. */ Index NCols() const { return nCols_; } /** Method to test if a given matrix belongs to a particular * matrix space. */ bool IsMatrixFromSpace(const Matrix& matrix) const { return (matrix.OwnerSpace() == this); } private: /**@name Default Compiler Generated Methods * (Hidden to avoid implicit creation/calling). * These methods are not implemented and * we do not want the compiler to implement * them for us, so we declare them private * and do not define them. This ensures that * they will not be implicitly created/called. */ //@{ /** default constructor */ MatrixSpace(); /** Copy constructor */ MatrixSpace(const MatrixSpace&); /** Overloaded Equals Operator */ MatrixSpace& operator=(const MatrixSpace&); //@} /** Number of rows for all matrices of this type. */ const Index nRows_; /** Number of columns for all matrices of this type. */ const Index nCols_; }; /* Inline Methods */ inline Index Matrix::NRows() const { return owner_space_->NRows(); } inline Index Matrix::NCols() const { return owner_space_->NCols(); } inline SmartPtr Matrix::OwnerSpace() const { return owner_space_; } } // namespace Ipopt // Macro definitions for debugging matrices #if COIN_IPOPT_VERBOSITY == 0 # define DBG_PRINT_MATRIX(__verbose_level, __mat_name, __mat) #else # define DBG_PRINT_MATRIX(__verbose_level, __mat_name, __mat) \ if (dbg_jrnl.Verbosity() >= (__verbose_level)) { \ if (dbg_jrnl.Jnlst()!=NULL) { \ (__mat).Print(dbg_jrnl.Jnlst(), \ J_ERROR, J_DBG, \ __mat_name, \ dbg_jrnl.IndentationLevel()*2, \ "# "); \ } \ } #endif // #if COIN_IPOPT_VERBOSITY == 0 #endif