// $Id: CbcSimpleInteger.hpp 1943 2013-07-21 09:05:45Z forrest $ // Copyright (C) 2002, International Business Machines // Corporation and others. All Rights Reserved. // This code is licensed under the terms of the Eclipse Public License (EPL). // Edwin 11/9/2009-- carved out of CbcBranchActual #ifndef CbcSimpleInteger_H #define CbcSimpleInteger_H #include "CbcBranchingObject.hpp" /** Simple branching object for an integer variable This object can specify a two-way branch on an integer variable. For each arm of the branch, the upper and lower bounds on the variable can be independently specified. Variable_ holds the index of the integer variable in the integerVariable_ array of the model. */ class CbcIntegerBranchingObject : public CbcBranchingObject { public: /// Default constructor CbcIntegerBranchingObject (); /** Create a standard floor/ceiling branch object Specifies a simple two-way branch. Let \p value = x*. One arm of the branch will be lb <= x <= floor(x*), the other ceil(x*) <= x <= ub. Specify way = -1 to set the object state to perform the down arm first, way = 1 for the up arm. */ CbcIntegerBranchingObject (CbcModel *model, int variable, int way , double value) ; /** Create a degenerate branch object Specifies a `one-way branch'. Calling branch() for this object will always result in lowerValue <= x <= upperValue. Used to fix a variable when lowerValue = upperValue. */ CbcIntegerBranchingObject (CbcModel *model, int variable, int way, double lowerValue, double upperValue) ; /// Copy constructor CbcIntegerBranchingObject ( const CbcIntegerBranchingObject &); /// Assignment operator CbcIntegerBranchingObject & operator= (const CbcIntegerBranchingObject& rhs); /// Clone virtual CbcBranchingObject * clone() const; /// Destructor virtual ~CbcIntegerBranchingObject (); /// Does part of constructor void fillPart ( int variable, int way , double value) ; using CbcBranchingObject::branch ; /** \brief Sets the bounds for the variable according to the current arm of the branch and advances the object state to the next arm. Returns change in guessed objective on next branch */ virtual double branch(); /** Update bounds in solver as in 'branch' and update given bounds. branchState is -1 for 'down' +1 for 'up' */ virtual void fix(OsiSolverInterface * solver, double * lower, double * upper, int branchState) const ; /** Change (tighten) bounds in object to reflect bounds in solver. Return true if now fixed */ virtual bool tighten(OsiSolverInterface * ) ; #ifdef JJF_ZERO // No need to override. Default works fine. /** Reset every information so that the branching object appears to point to the previous child. This method does not need to modify anything in any solver. */ virtual void previousBranch(); #endif using CbcBranchingObject::print ; /** \brief Print something about branch - only if log level high */ virtual void print(); /// Lower and upper bounds for down branch inline const double * downBounds() const { return down_; } /// Lower and upper bounds for up branch inline const double * upBounds() const { return up_; } /// Set lower and upper bounds for down branch inline void setDownBounds(const double bounds[2]) { memcpy(down_, bounds, 2*sizeof(double)); } /// Set lower and upper bounds for up branch inline void setUpBounds(const double bounds[2]) { memcpy(up_, bounds, 2*sizeof(double)); } #ifdef FUNNY_BRANCHING /** Which variable (top bit if upper bound changing, next bit if on down branch */ inline const int * variables() const { return variables_; } // New bound inline const double * newBounds() const { return newBounds_; } /// Number of bound changes inline int numberExtraChangedBounds() const { return numberExtraChangedBounds_; } /// Just apply extra bounds to one variable - COIN_DBL_MAX ignore int applyExtraBounds(int iColumn, double lower, double upper, int way) ; /// Deactivate bounds for branching void deactivate(); /// Are active bounds for branching inline bool active() const { return (down_[1] != -COIN_DBL_MAX); } #endif /** Return the type (an integer identifier) of \c this */ virtual CbcBranchObjType type() const { return SimpleIntegerBranchObj; } /** Compare the \c this with \c brObj. \c this and \c brObj must be os the same type and must have the same original object, but they may have different feasible regions. Return the appropriate CbcRangeCompare value (first argument being the sub/superset if that's the case). In case of overlap (and if \c replaceIfOverlap is true) replace the current branching object with one whose feasible region is the overlap. */ virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject* brObj, const bool replaceIfOverlap = false); protected: /// Lower [0] and upper [1] bounds for the down arm (way_ = -1) double down_[2]; /// Lower [0] and upper [1] bounds for the up arm (way_ = 1) double up_[2]; #ifdef FUNNY_BRANCHING /** Which variable (top bit if upper bound changing) next bit if changing on down branch only */ int * variables_; // New bound double * newBounds_; /// Number of Extra bound changes int numberExtraChangedBounds_; #endif }; /// Define a single integer class class CbcSimpleInteger : public CbcObject { public: // Default Constructor CbcSimpleInteger (); // Useful constructor - passed model and index CbcSimpleInteger (CbcModel * model, int iColumn, double breakEven = 0.5); // Useful constructor - passed model and Osi object CbcSimpleInteger (CbcModel * model, const OsiSimpleInteger * object); // Copy constructor CbcSimpleInteger ( const CbcSimpleInteger &); /// Clone virtual CbcObject * clone() const; // Assignment operator CbcSimpleInteger & operator=( const CbcSimpleInteger& rhs); // Destructor virtual ~CbcSimpleInteger (); /// Construct an OsiSimpleInteger object OsiSimpleInteger * osiObject() const; /// Infeasibility - large is 0.5 virtual double infeasibility(const OsiBranchingInformation * info, int &preferredWay) const; using CbcObject::feasibleRegion ; /** Set bounds to fix the variable at the current (integer) value. Given an integer value, set the lower and upper bounds to fix the variable. Returns amount it had to move variable. */ virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const; /** Create a branching object and indicate which way to branch first. The branching object has to know how to create branches (fix variables, etc.) */ virtual CbcBranchingObject * createCbcBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) ; /// Fills in a created branching object /*virtual*/ void fillCreateBranch(CbcIntegerBranchingObject * branching, const OsiBranchingInformation * info, int way) ; using CbcObject::solverBranch ; /** Create an OsiSolverBranch object This returns NULL if branch not represented by bound changes */ virtual OsiSolverBranch * solverBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info) const; /** Set bounds to fix the variable at the current (integer) value. Given an integer value, set the lower and upper bounds to fix the variable. The algorithm takes a bit of care in order to compensate for minor numerical inaccuracy. */ virtual void feasibleRegion(); /** Column number if single column object -1 otherwise, so returns >= 0 Used by heuristics */ virtual int columnNumber() const; /// Set column number inline void setColumnNumber(int value) { columnNumber_ = value; } /** Reset variable bounds to their original values. Bounds may be tightened, so it may be good to be able to set this info in object. */ virtual void resetBounds(const OsiSolverInterface * solver) ; /** Change column numbers after preprocessing */ virtual void resetSequenceEtc(int numberColumns, const int * originalColumns) ; /// Original bounds inline double originalLowerBound() const { return originalLower_; } inline void setOriginalLowerBound(double value) { originalLower_ = value; } inline double originalUpperBound() const { return originalUpper_; } inline void setOriginalUpperBound(double value) { originalUpper_ = value; } /// Breakeven e.g 0.7 -> >= 0.7 go up first inline double breakEven() const { return breakEven_; } /// Set breakeven e.g 0.7 -> >= 0.7 go up first inline void setBreakEven(double value) { breakEven_ = value; } protected: /// data /// Original lower bound double originalLower_; /// Original upper bound double originalUpper_; /// Breakeven i.e. >= this preferred is up double breakEven_; /// Column number in model int columnNumber_; /// If -1 down always chosen first, +1 up always, 0 normal int preferredWay_; }; #endif