// Copyright (C) 2015 - IIT Bombay - FOSSEE // // Author: R.Vidyadhar & Vignesh Kannan // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // <-- JVM NOT MANDATORY --> // <-- ENGLISH IMPOSED --> // // assert_close -- // Returns 1 if the two real matrices computed and expected are close, // i.e. if the relative distance between computed and expected is lesser than epsilon. // Arguments // computed, expected : the two matrices to compare // epsilon : a small number // function flag = assert_close ( computed, expected, epsilon ) if expected==0.0 then shift = norm(computed-expected); else shift = norm(computed-expected)/norm(expected); end // if shift < epsilon then // flag = 1; // else // flag = 0; // end // if flag <> 1 then pause,end flag = assert_checktrue ( shift < epsilon ); endfunction // // assert_equal -- // Returns 1 if the two real matrices computed and expected are equal. // Arguments // computed, expected : the two matrices to compare // epsilon : a small number // //function flag = assert_equal ( computed , expected ) // if computed==expected then // flag = 1; // else // flag = 0; // end // if flag <> 1 then pause,end //endfunction //Find x in R^2 such that it minimizes the Rosenbrock function //f = 100*(x2 - x1^2)^2 + (1-x1)^2 //Objective function to be minimised function y= f(x) y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2; endfunction //Starting point x0=[-1,2]; //Gradient of objective function function y= fGrad(x) y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)]; endfunction //Hessian of Objective Function function y= fHess(x) y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ]; endfunction //Options options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", fHess); //Calling Ipopt [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options) assert_close ( xopt , [ 1 1 ]' , 0.0005 ); assert_close ( fopt , [0] , 0.0005 ); assert_checkequal( exitflag , int32(0) ); printf("Test Successful");