// Copyright (C) 2015 - IIT Bombay - FOSSEE // // Author: Animesh Baranawal // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // <-- JVM NOT MANDATORY --> // <-- ENGLISH IMPOSED --> // // assert_close -- // Returns 1 if the two real matrices computed and expected are close, // i.e. if the relative distance between computed and expected is lesser than epsilon. // Arguments // computed, expected : the two matrices to compare // epsilon : a small number // function flag = assert_close ( computed, expected, epsilon ) if expected==0.0 then shift = norm(computed-expected); else shift = norm(computed-expected)/norm(expected); end // if shift < epsilon then // flag = 1; // else // flag = 0; // end // if flag <> 1 then pause,end flag = assert_checktrue ( shift < epsilon ); endfunction // // assert_equal -- // Returns 1 if the two real matrices computed and expected are equal. // Arguments // computed, expected : the two matrices to compare // epsilon : a small number // //function flag = assert_equal ( computed , expected ) // if computed==expected then // flag = 1; // else // flag = 0; // end // if flag <> 1 then pause,end //endfunction // A case where we provide the gradient of the objective // functions and the Jacobian matrix of the constraints. // The objective function and its gradient function f = myfun(x) f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304; f(2)= -x(1)^2 - 3*x(2)^2; f(3)= x(1) + 3*x(2) -18; f(4)= -x(1) - x(2); f(5)= x(1) + x(2) - 8; endfunction // Defining gradient of myfun function G = myfungrad(x) G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1; 2*x(2) - 40, -6*x(2), 3, -1, 1; ]' endfunction // The nonlinear constraints and the Jacobian // matrix of the constraints function [c,ceq] = confun(x) // Inequality constraints c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10] // No nonlinear equality constraints ceq=[] endfunction // Defining gradient of confungrad function [DC,DCeq] = cgrad(x) // DC(:,i) = gradient of the i-th constraint // DC = [ // Dc1/Dx1 Dc1/Dx2 // Dc2/Dx1 Dc2/Dx2 // ] DC= [ x(2)-1, -x(2) x(1)-1, -x(1) ]' DCeq = []' endfunction // Test with both gradient of objective and gradient of constraints minimaxOptions = list("GradObj",myfungrad,"GradCon",cgrad); // The initial guess x0 = [0,10]; // The expected solution : only 4 digits are guaranteed //xopt = [0.92791 7.93551] //fopt = [6.73443 -189.778 6.73443 -8.86342 0.86342] maxfopt = 6.73443 // Run fminimax [xopt,fopt,maxfval,exitflag,output] = fminimax(myfun,x0,[],[],[],[],[],[], confun, minimaxOptions) assert_close ( xopt , [ 8.6737161 0.9348425 ]' , 0.0005 ); assert_close ( fopt , [ 1.6085585 -77.855143 -6.5217563 -9.6085587 1.6085587 ]' , 0.0005 ); assert_checkequal( exitflag , int32(0) ); printf("Test Successful");