// Copyright (C) 2015 - IIT Bombay - FOSSEE // // Author: R.Vidyadhar & Vignesh Kannan // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // <-- JVM NOT MANDATORY --> // <-- ENGLISH IMPOSED --> // // assert_close -- // Returns 1 if the two real matrices computed and expected are close, // i.e. if the relative distance between computed and expected is lesser than epsilon. // Arguments // computed, expected : the two matrices to compare // epsilon : a small number // function flag = assert_close ( computed, expected, epsilon ) if expected==0.0 then shift = norm(computed-expected); else shift = norm(computed-expected)/norm(expected); end // if shift < epsilon then // flag = 1; // else // flag = 0; // end // if flag <> 1 then pause,end flag = assert_checktrue ( shift < epsilon ); endfunction // // assert_equal -- // Returns 1 if the two real matrices computed and expected are equal. // Arguments // computed, expected : the two matrices to compare // epsilon : a small number // //function flag = assert_equal ( computed , expected ) // if computed==expected then // flag = 1; // else // flag = 0; // end // if flag <> 1 then pause,end //endfunction //Find x in R^3 such that it minimizes: //f(x)= x1*x2 + x2*x3 //x0=[0.1 , 0.1 , 0.1] //constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2 //constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10 //Objective function to be minimised function y=f(x) y=x(1)*x(2)+x(2)*x(3); endfunction //Starting point, linear constraints and variable bounds x0=[0.1 , 0.1 , 0.1]; A=[]; b=[]; Aeq=[]; beq=[]; lb=[]; ub=[]; //Nonlinear constraints function [c,ceq]=nlc(x) c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10]; ceq = []; endfunction //Gradient of objective function function y= fGrad(x) y= [x(2),x(1)+x(3),x(2)]; endfunction //Hessian of the Lagrange Function function y= lHess(x,obj,lambda) y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2] endfunction //Gradient of Non-Linear Constraints function [cg,ceqg] = cGrad(x) cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)]; ceqg=[]; endfunction //Options options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad); //Calling Ipopt [xopt,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) assert_close ( xopt , [ -1.5811388 2.236068 -1.5811388 ]' , 0.0005 ); assert_close ( fval , [-7.0710678 ]' , 0.0005 ); assert_checkequal( exitflag , int32(0) ); printf("Test Successful");