// Check for the maximum iteration function y=yth(t, x) y = x(1)*exp(-x(2)*t) endfunction // we have the m measures (ti, yi): m = 10; tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; // measure weights (here all equal to 1...) wm = ones(m,1); // and we want to find the parameters x such that the model fits the given // data in the least square sense: // // minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 // initial parameters guess x0 = [1.5; 0.8]; // in the first examples, we define the function fun and dfun // in scilab language function y=myfun(x, tm, ym, wm) y = wm.*( yth(tm, x) - ym ) endfunction options = list("MaxIter",10) //Error //Maximum Number of Iterations Exceeded. Output may not be optimal. // gradient = // // 512.91855 - 4714.171 // lambda = // // lower: [0,0] // upper: [0,0] // output = // // Iterations: 10 // Cpu_Time: 0.12 // Objective_Evaluation: 11 // Dual_Infeasibility: 4714.171 // Message: "Maximum Number of Iterations Exceeded. Output may not be optimal" // exitflag = // // 1 // residual = // // 4.8006782 // 5.767661 // 6.7598659 // 7.8617282 // 9.0596638 // 10.40234 // 11.920987 // 13.599744 // 15.516066 // 17.701171 // resnorm = // // 1235.2439 // xopt = // // 4.9162235 // - 0.5142398 [xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options)