// Check for elements in lb function y=yth(t, x) y = x(1)*exp(-x(2)*t) endfunction // we have the m measures (ti, yi): m = 10; tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; // measure weights (here all equal to 1...) wm = ones(m,1); // and we want to find the parameters x such that the model fits the given // data in the least square sense: // // minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 // initial parameters guess x0 = [1.5; 0.8]; // in the first examples, we define the function fun and dfun // in scilab language function y=myfun(x, tm, ym, wm) y = wm.*( yth(tm, x) - ym ) endfunction lb = [0 0 0] ub = [10 10] //Error //lsqnonlin: The Lower Bound is not equal to the number of variables //at line 246 of function lsqnonlin called by : //[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) [xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub)