// Example where user provides gradient of the objective function function y=fun(x) y=x(1)*x(1)+x(2)*x(2); endfunction function y= fGrad(x) y= [2*x(1),2*x(2)]; endfunction x0 = [1,2]; A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; b=[2;1;2;1;-1;2]; Aeq = [1,3] beq= [5] lb = [0 0] ub = [2 1.5] function [c,ceq]=nlc(x) c = [x(1)^2 - x(2)^2 + 0.5 , x(1)^2 + x(2)^2 - 2.5]; ceq = []; endfunction options = list("MaxIter", [150], "CpuTime", [500], "GradObj", fGrad) //Output //Optimal Solution Found. // hessian = // // 3970695.6 3.311D-10 // 3.311D-10 3970695.4 // gradient = // // 1.0000000 3. // lambda = // // lower: [1.818D-08,6.061D-09] // upper: [6.061D-09,0.7272728] // ineqlin: [0.3636363,7.273D-08,3.030D-09,3.463D-09,9.091D-09,9.091D-09] // eqlin: -2.2698905 // ineqnonlin: [6.061D-09,0.9062542] // eqnonlin: [0x0 constant] // output = // // Iterations: 20 // Cpu_Time: 0.852 // Objective_Evaluation: 23 // Dual_Infeasibility: 1.884D-09 // exitflag = // // 0 // fopt = // // 2.5 // xopt = // // 0.5000000 // 1.5 [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fmincon (fun, x0, A, b, Aeq, beq, lb, ub, nlc, options)