// Example with objective function, equality, inequality constraints and variable bounds function y=fun(x) y=x(1)*x(1)+x(2)*x(2); endfunction x0 = [1,2]; A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; b=[2;1;2;1;-1;2]; Aeq = [1,3] beq= [5] lb = [0 0] ub = [2 1.5] //Output //Optimal Solution Found. // hessian = // // 2. 0. // 0. 2. // gradient = // // 0.9999999 3. // lambda = // // lower: [1.820D-08,6.060D-09] // upper: [6.059D-09,0.7267088] // ineqlin: [0.3633544,7.251D-08,3.030D-09,3.463D-09,9.093D-09,9.096D-09] // eqlin: -1.3633544 // ineqnonlin: [0x0 constant] // eqnonlin: [0x0 constant] // output = // // Iterations: 21 // Cpu_Time: 0.2 // Objective_Evaluation: 26 // Dual_Infeasibility: 9.075D-11 // exitflag = // // 0 // fopt = // // 2.5 // xopt = // // 0.5000000 // 1.5 [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fmincon (fun, x0, A, b, Aeq, beq, lb, ub)