// Example with objective function, equality and inequality constraints function y=fun(x) y=x(1)*x(1)+x(2)*x(2); endfunction x0 = [1,2]; A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; b=[2;1;2;1;-1;2]; Aeq = [1,3] beq= [1.5] //Output //Optimal Solution Found. // hessian = // // 2. 0. // 0. 2. // gradient = // // 1.5 0.5000000 // lambda = // // lower: [0,0] // upper: [0,0] // ineqlin: [9.089D-09,4.842D-08,6.059D-09,6.324D-09,2.0000001,3.637D-09] // eqlin: 0.5000000 // ineqnonlin: [0x0 constant] // eqnonlin: [0x0 constant] // output = // // Iterations: 8 // Cpu_Time: 0.092 // Objective_Evaluation: 9 // Dual_Infeasibility: 1.869D-11 // exitflag = // // 0 // fopt = // // 0.6250000 // xopt = // // 0.7500000 // 0.25 [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fmincon (fun, x0, A, b,Aeq,beq)