// Example with objective function and inequality constraints function y=fun(x) y=x(1)*x(1)+x(2)*x(2); endfunction x0 = [1,2]; A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; b=[2;1;2;1;-1;2]; //Output //Optimal Solution Found. // hessian = // // 2. - 7.451D-09 // - 7.451D-09 2. // gradient = // // 1.0000000 1. // lambda = // // lower: [0,0] // upper: [0,0] // ineqlin: [9.087D-09,2.424D-08,4.546D-09,5.596D-09,1,4.544D-09] // eqlin: [0x0 constant] // ineqnonlin: [0x0 constant] // eqnonlin: [0x0 constant] // output = // // Iterations: 8 // Cpu_Time: 0.112 // Objective_Evaluation: 9 // Dual_Infeasibility: 1.299D-11 // exitflag = // // 0 // fopt = // // 0.5 // xopt = // // 0.5000000 // 0.5000000 [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fmincon (fun, x0, A, b)