// Copyright (C) 2015 - IIT Bombay - FOSSEE // // Author: Harpreet Singh // Organization: FOSSEE, IIT Bombay // Email: harpreet.mertia@gmail.com // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin) // Solves a linear quadratic problem. // // Calling Sequence // xopt = qpipoptmat(H,f) // xopt = qpipoptmat(H,f,A,b) // xopt = qpipoptmat(H,f,A,b,Aeq,beq) // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub) // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0) // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param) // [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... ) // // Parameters // H : a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem. // f : a vector of doubles, represents coefficients of linear in the quadratic problem // A : a vector of doubles, represents the linear coefficients in the inequality constraints // b : a vector of doubles, represents the linear coefficients in the inequality constraints // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints // beq : a vector of doubles, represents the linear coefficients in the equality constraints // LB : a vector of doubles, contains lower bounds of the variables. // UB : a vector of doubles, contains upper bounds of the variables. // x0 : a vector of doubles, contains initial guess of variables. // param : a list containing the the parameters to be set. // xopt : a vector of doubles, the computed solution of the optimization problem. // fopt : a double, the function value at x. // exitflag : Integer identifying the reason the algorithm terminated. // output : Structure containing information about the optimization. Right now it contains number of iteration. // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints. // // Description // Search the minimum of a constrained linear quadratic optimization problem specified by : // find the minimum of f(x) such that // // <latex> // \begin{eqnarray} // &\mbox{min}_{x} // & 1/2*x'*H*x + f'*x \\ // & \text{subject to} & A*x \leq b \\ // & & Aeq*x = beq \\ // & & lb \leq x \leq ub \\ // \end{eqnarray} // </latex> // // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. // // Examples // //Find the value of x that minimize following function // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2 // // Subject to: // // x1 + x2 ≤ 2 // // –x1 + 2x2 ≤ 2 // // 2x1 + x2 ≤ 3 // // 0 ≤ x1, 0 ≤ x2. // H = [1 -1; -1 2]; // f = [-2; -6]; // A = [1 1; -1 2; 2 1]; // b = [2; 2; 3]; // lb = [0; 0]; // ub = [%inf; %inf]; // [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub) // // Press ENTER to continue // // Examples // //Find x in R^6 such that: // Aeq= [1,-1,1,0,3,1; // -1,0,-3,-4,5,6; // 2,5,3,0,1,0]; // beq=[1; 2; 3]; // A= [0,1,0,1,2,-1; // -1,0,2,1,1,0]; // b = [-1; 2.5]; // lb=[-1000; -10000; 0; -1000; -1000; -1000]; // ub=[10000; 100; 1.5; 100; 100; 1000]; // x0 = repmat(0,6,1); // param = list("MaxIter", 300, "CpuTime", 100); // //and minimize 0.5*x'*Q*x + p'*x with // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6); // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param) // Authors // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh //To check the number of input and output argument [lhs , rhs] = argn(); //To check the number of argument given by user if ( rhs < 2 | rhs == 3 | rhs == 5 | rhs == 7 | rhs > 10 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 4 6 8 9 10]"), "qpipoptmat", rhs); error(errmsg) end H = varargin(1); f = varargin(2); nbVar = size(H,1); if ( rhs<3 ) then A = [] b = [] else A = varargin(3); b = varargin(4); end if ( rhs<5 ) then Aeq = [] beq = [] else Aeq = varargin(5); beq = varargin(6); end if ( rhs<7 ) then LB = repmat(-%inf,nbVar,1); UB = repmat(%inf,nbVar,1); else LB = varargin(7); UB = varargin(8); end if ( rhs<9 | size(varargin(9)) ==0 ) then x0 = repmat(0,nbVar,1) else x0 = varargin(9); end if ( rhs<10 | size(varargin(10)) ==0 ) then param = list(); else param =varargin(10); end if (size(LB,2)==0) then LB = repmat(-%inf,nbVar,1); end if (size(UB,2)==0) then UB = repmat(%inf,nbVar,1); end if (size(f,2)==0) then f = repmat(0,nbVar,1); end if (type(param) ~= 15) then errmsg = msprintf(gettext("%s: param should be a list "), "qpipoptmat"); error(errmsg); end if (modulo(size(param),2)) then errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipoptmat"); error(errmsg); end options = list(.. "MaxIter" , [3000], ... "CpuTime" , [600] ... ); for i = 1:(size(param))/2 select param(2*i-1) case "MaxIter" then options(2*i) = param(2*i); case "CpuTime" then options(2*i) = param(2*i); else errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "qpipoptmat", param(2*i-1)); error(errmsg) end end nbConInEq = size(A,1); nbConEq = size(Aeq,1); // Check if the user gives row vector // and Changing it to a column matrix if (size(f,2)== [nbVar]) then f=f'; end if (size(LB,2)== [nbVar]) then LB = LB'; end if (size(UB,2)== [nbVar]) then UB = UB'; end if (size(b,2)==nbConInEq) then b = b'; end if (size(beq,2)== nbConEq) then beq = beq'; end if (size(x0,2)== [nbVar]) then x0=x0'; end //Checking the H matrix which needs to be a symmetric matrix if ( ~isequal(H,H')) then errmsg = msprintf(gettext("%s: H is not a symmetric matrix"), "qpipoptmat"); error(errmsg); end //Check the size of f which should equal to the number of variable if ( size(f,1) ~= [nbVar]) then errmsg = msprintf(gettext("%s: The number of rows and columns in H must be equal the number of elements of f"), "qpipoptmat"); error(errmsg); end //Check the size of inequality constraint which should be equal to the number of variables if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of f"), "qpipoptmat"); error(errmsg); end //Check the size of equality constraint which should be equal to the number of variables if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of f"), "qpipoptmat"); error(errmsg); end //Check the size of Lower Bound which should be equal to the number of variables if ( size(LB,1) ~= nbVar) then errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipoptmat"); error(errmsg); end //Check the size of Upper Bound which should equal to the number of variables if ( size(UB,1) ~= nbVar) then errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipoptmat"); error(errmsg); end //Check the size of constraints of Lower Bound which should equal to the number of constraints if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elementsof b"), "qpipoptmat"); error(errmsg); end //Check the size of constraints of Upper Bound which should equal to the number of constraints if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "qpipoptmat"); error(errmsg); end //Check the size of initial of variables which should equal to the number of variables if ( size(x0,1) ~= nbVar) then warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "qpipoptmat"); warning(warnmsg); end //Check if the user gives a matrix instead of a vector if ((size(f,1)~=1)& (size(f,2)~=1)) then errmsg = msprintf(gettext("%s: f should be a vector"), "qpipoptmat"); error(errmsg); end if (size(LB,1)~=1)& (size(LB,2)~=1) then errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "qpipoptmat"); error(errmsg); end if (size(UB,1)~=1)& (size(UB,2)~=1) then errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "qpipoptmat"); error(errmsg); end if (nbConInEq) then if ((size(b,1)~=1)& (size(b,2)~=1)) then errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "qpipoptmat"); error(errmsg); end end if (nbConEq) then if (size(beq,1)~=1)& (size(beq,2)~=1) then errmsg = msprintf(gettext("%s: Constraint should be a vector"), "qpipoptmat"); error(errmsg); end end for i = 1:nbConInEq if (b(i) == -%inf) errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "qpipoptmat"); error(errmsg); end end for i = 1:nbConEq if (beq(i) == -%inf) errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "qpipoptmat"); error(errmsg); end end //Converting it into ipopt format f = f'; LB = LB'; UB = UB'; x0 = x0'; conMatrix = [Aeq;A]; nbCon = size(conMatrix,1); conLB = [beq; repmat(-%inf,nbConInEq,1)]'; conUB = [beq;b]' ; [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,LB,UB,x0,options); xopt = xopt'; exitflag = status; output = struct("Iterations" , []); output.Iterations = iter; lambda = struct("lower" , [], .. "upper" , [], .. "eqlin" , [], .. "ineqlin" , []); lambda.lower = Zl; lambda.upper = Zu; lambda.eqlin = lmbda(1:nbConEq); lambda.ineqlin = lmbda(nbConEq+1:nbCon); select status case 0 then printf("\nOptimal Solution Found.\n"); case 1 then printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n"); case 2 then printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n"); case 3 then printf("\nStop at Tiny Step\n"); case 4 then printf("\nSolved To Acceptable Level\n"); case 5 then printf("\nConverged to a point of local infeasibility.\n"); case 6 then printf("\nStopping optimization at current point as requested by user.\n"); case 7 then printf("\nFeasible point for square problem found.\n"); case 8 then printf("\nIterates diverging; problem might be unbounded.\n"); case 9 then printf("\nRestoration Failed!\n"); case 10 then printf("\nError in step computation (regularization becomes too large?)!\n"); case 12 then printf("\nProblem has too few degrees of freedom.\n"); case 13 then printf("\nInvalid option thrown back by IPOpt\n"); case 14 then printf("\nNot enough memory.\n"); case 15 then printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.\n"); else printf("\nInvalid status returned. Notify the Toolbox authors\n"); break; end endfunction