// Copyright (C) 2015 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author: Harpreet Singh // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin) // Solves a linear quadratic problem. // // Calling Sequence // xopt = qpipoptmat(H,f) // xopt = qpipoptmat(H,f,A,b) // xopt = qpipoptmat(H,f,A,b,Aeq,beq) // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub) // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0) // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param) // [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... ) // // Parameters // H : a symmetric matrix of double, represents coefficients of quadratic in the quadratic problem. // f : a vector of double, represents coefficients of linear in the quadratic problem // A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. // b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. // Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. // beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. // lb : a vector of double, contains lower bounds of the variables. // ub : a vector of double, contains upper bounds of the variables. // x0 : a vector of double, contains initial guess of variables. // param : a list containing the parameters to be set. // xopt : a vector of double, the computed solution of the optimization problem. // fopt : a double, the value of the function at x. // exitflag : The exit status. See below for details. // output : The structure consist of statistics about the optimization. See below for details. // lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details. // // Description // Search the minimum of a constrained linear quadratic optimization problem specified by : // // // \begin{eqnarray} // &\mbox{min}_{x} // & 1/2⋅x^T⋅H⋅x + f^T⋅x \\ // & \text{subject to} & A⋅x \leq b \\ // & & Aeq⋅x = beq \\ // & & lb \leq x \leq ub \\ // \end{eqnarray} // // // The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++. // // The options allows the user to set various parameters of the Optimization problem. // It should be defined as type "list" and contains the following fields. // // Syntax : options= list("MaxIter", [---], "CpuTime", [---]); // MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take. // CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take. // Default Values : options = list("MaxIter", [3000], "CpuTime", [600]); // // // The exitflag allows to know the status of the optimization which is given back by Ipopt. // // exitflag=0 : Optimal Solution Found // exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal. // exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal. // exitflag=3 : Stop at Tiny Step. // exitflag=4 : Solved To Acceptable Level. // exitflag=5 : Converged to a point of local infeasibility. // // // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/ // // The output data structure contains detailed informations about the optimization process. // It has type "struct" and contains the following fields. // // output.iterations: The number of iterations performed during the search // output.constrviolation: The max-norm of the constraint violation. // // // The lambda data structure contains the Lagrange multipliers at the end // of optimization. In the current version the values are returned only when the the solution is optimal. // It has type "struct" and contains the following fields. // // lambda.lower: The Lagrange multipliers for the lower bound constraints. // lambda.upper: The Lagrange multipliers for the upper bound constraints. // lambda.eqlin: The Lagrange multipliers for the linear equality constraints. // lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints. // // // Examples // //Ref : example 14 : // //https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf // // min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2 // // such that // // x1 + x2 <= 5, // // x1 <= 3, // // x1 >= 0, // // x2 >= 0 // H = [2 0 // 0 8]; // f = [-8; -16]; // A = [1 1;1 0]; // b = [5;3]; // lb = [0; 0]; // ub = [%inf; %inf]; // [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub) // // Press ENTER to continue // // Examples // //Find x in R^6 such that: // Aeq= [1,-1,1,0,3,1; // -1,0,-3,-4,5,6; // 2,5,3,0,1,0]; // beq=[1; 2; 3]; // A= [0,1,0,1,2,-1; // -1,0,2,1,1,0]; // b = [-1; 2.5]; // lb=[-1000; -10000; 0; -1000; -1000; -1000]; // ub=[10000; 100; 1.5; 100; 100; 1000]; // x0 = repmat(0,6,1); // param = list("MaxIter", 300, "CpuTime", 100); // //and minimize 0.5*x'*H*x + f'*x with // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6); // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param) // Authors // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh //To check the number of input and output argument [lhs , rhs] = argn(); //To check the number of argument given by user if ( rhs < 2 | rhs == 3 | rhs == 5 | rhs == 7 | rhs > 10 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 4 6 8 9 10]"), "qpipoptmat", rhs); error(errmsg) end H = []; f = []; A = []; b = []; Aeq = []; beq = []; lb = []; ub = []; H = varargin(1); f = varargin(2); nbVar = size(H,1); if(nbVar == 0) then errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"), "qpipoptmat"); error(errmsg); end if ( rhs<3 ) then A = [] b = [] else A = varargin(3); b = varargin(4); end if ( rhs<5 ) then Aeq = [] beq = [] else Aeq = varargin(5); beq = varargin(6); end if ( rhs<7 ) then lb = repmat(-%inf,nbVar,1); ub = repmat(%inf,nbVar,1); else lb = varargin(7); ub = varargin(8); end if ( rhs<9 | size(varargin(9)) ==0 ) then x0 = repmat(0,nbVar,1) else x0 = varargin(9); end if ( rhs<10 | size(varargin(10)) ==0 ) then param = list(); else param =varargin(10); end if (size(lb,2)==0) then lb = repmat(-%inf,nbVar,1); end if (size(ub,2)==0) then ub = repmat(%inf,nbVar,1); end if (size(f,2)==0) then f = repmat(0,nbVar,1); end if (modulo(size(param),2)) then errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipoptmat"); error(errmsg); end //Check type of variables Checktype("qpipoptmat", H, "H", 1, "constant") Checktype("qpipoptmat", f, "f", 2, "constant") Checktype("qpipoptmat", A, "A", 3, "constant") Checktype("qpipoptmat", b, "b", 4, "constant") Checktype("qpipoptmat", Aeq, "Aeq", 5, "constant") Checktype("qpipoptmat", beq, "beq", 6, "constant") Checktype("qpipoptmat", lb, "lb", 7, "constant") Checktype("qpipoptmat", ub, "ub", 8, "constant") Checktype("qpipoptmat", x0, "x0", 9, "constant") Checktype("qpipoptmat", param, "param", 10, "list") options = list("MaxIter" , [3000], ... "CpuTime" , [600]); for i = 1:(size(param))/2 select convstr(param(2*i-1),'l') case "maxiter" then options(2*i) = param(2*i); case "cputime" then options(2*i) = param(2*i); else errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1)); error(errmsg) end end nbConInEq = size(A,1); nbConEq = size(Aeq,1); // Check if the user gives row vector // and Changing it to a column matrix if (size(f,2)== [nbVar]) then f=f'; end if (size(lb,2)== [nbVar]) then lb = lb'; end if (size(ub,2)== [nbVar]) then ub = ub'; end if (size(b,2)==nbConInEq) then b = b'; end if (size(beq,2)== nbConEq) then beq = beq'; end if (size(x0,2)== [nbVar]) then x0=x0'; end //Checking the H matrix which needs to be a symmetric matrix if ( ~isequal(H,H')) then errmsg = msprintf(gettext("%s: H is not a symmetric matrix"), "qpipoptmat"); error(errmsg); end //Check the size of f which should equal to the number of variable if ( size(f,1) ~= [nbVar]) then errmsg = msprintf(gettext("%s: The number of rows and columns in H must be equal the number of elements of f"), "qpipoptmat"); error(errmsg); end //Check the size of inequality constraint which should be equal to the number of variables if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of f"), "qpipoptmat"); error(errmsg); end //Check the size of equality constraint which should be equal to the number of variables if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of f"), "qpipoptmat"); error(errmsg); end //Check the size of Lower Bound which should be equal to the number of variables if ( size(lb,1) ~= nbVar) then errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipoptmat"); error(errmsg); end //Check the size of Upper Bound which should equal to the number of variables if ( size(ub,1) ~= nbVar) then errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipoptmat"); error(errmsg); end //Check the size of constraints of Lower Bound which should equal to the number of constraints if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elements of b"), "qpipoptmat"); error(errmsg); end //Check the size of constraints of Upper Bound which should equal to the number of constraints if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "qpipoptmat"); error(errmsg); end //Check the size of initial of variables which should equal to the number of variables if ( size(x0,1) ~= nbVar) then warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "qpipoptmat"); warning(warnmsg); x0 = repmat(0,nbVar,1); end //Check if the user gives a matrix instead of a vector if ((size(f,1)~=1)& (size(f,2)~=1)) then errmsg = msprintf(gettext("%s: f should be a vector"), "qpipoptmat"); error(errmsg); end if (size(lb,1)~=1)& (size(ub,2)~=1) then errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "qpipoptmat"); error(errmsg); end if (size(ub,1)~=1)& (size(ub,2)~=1) then errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "qpipoptmat"); error(errmsg); end if (nbConInEq) then if ((size(b,1)~=1)& (size(b,2)~=1)) then errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "qpipoptmat"); error(errmsg); end end if (nbConEq) then if (size(beq,1)~=1)& (size(beq,2)~=1) then errmsg = msprintf(gettext("%s: Constraint should be a vector"), "qpipoptmat"); error(errmsg); end end for i = 1:nbConInEq if (b(i) == -%inf) errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "qpipoptmat"); error(errmsg); end end for i = 1:nbConEq if (beq(i) == -%inf) errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "qpipoptmat"); error(errmsg); end end for i = 1:nbVar if(lb(i)>ub(i)) errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "lsqlin"); error(errmsg); end end //Converting it into ipopt format f = f'; lb = lb'; ub = ub'; x0 = x0'; conMatrix = [Aeq;A]; nbCon = size(conMatrix,1); conLB = [beq; repmat(-%inf,nbConInEq,1)]'; conUB = [beq;b]' ; [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,lb,ub,x0,options); xopt = xopt'; exitflag = status; output = struct("Iterations" , [], .. "ConstrViolation" ,[]); output.Iterations = iter; output.ConstrViolation = max([0;norm(Aeq*xopt-beq, 'inf');(lb'-xopt);(xopt-ub');(A*xopt-b)]); lambda = struct("lower" , [], .. "upper" , [], .. "eqlin" , [], .. "ineqlin" , []); lambda.lower = Zl; lambda.upper = Zu; lambda.eqlin = lmbda(1:nbConEq); lambda.ineqlin = lmbda(nbConEq+1:nbCon); select status case 0 then printf("\nOptimal Solution Found.\n"); case 1 then printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n"); case 2 then printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n"); case 3 then printf("\nStop at Tiny Step\n"); case 4 then printf("\nSolved To Acceptable Level\n"); case 5 then printf("\nConverged to a point of local infeasibility.\n"); case 6 then printf("\nStopping optimization at current point as requested by user.\n"); case 7 then printf("\nFeasible point for square problem found.\n"); case 8 then printf("\nIterates diverging; problem might be unbounded.\n"); case 9 then printf("\nRestoration Failed!\n"); case 10 then printf("\nError in step computation (regularization becomes too large?)!\n"); case 12 then printf("\nProblem has too few degrees of freedom.\n"); case 13 then printf("\nInvalid option thrown back by Ipopt\n"); case 14 then printf("\nNot enough memory.\n"); case 15 then printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n"); else printf("\nInvalid status returned. Notify the Toolbox authors\n"); break; end endfunction