// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// Solves a linear quadratic problem.
//
// Calling Sequence
// xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
// xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0)
// xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param)
// [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
//
// Parameters
// nbVar : a double, number of variables
// nbCon : a double, number of constraints
// H : a symmetric matrix of double, represents coefficients of quadratic in the quadratic problem.
// f : a vector of double, represents coefficients of linear in the quadratic problem
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
// A : a matrix of double, contains the constraint matrix conLB ≤ A⋅x ≤ conUB.
// conLB : a vector of double, contains lower bounds of the constraints conLB ≤ A⋅x ≤ conUB.
// conUB : a vector of double, contains upper bounds of the constraints conLB ≤ A⋅x ≤ conUB.
// x0 : a vector of double, contains initial guess of variables.
// param : a list containing the parameters to be set.
// xopt : a vector of double, the computed solution of the optimization problem.
// fopt : a double, the value of the function at x.
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// Search the minimum of a constrained linear quadratic optimization problem specified by :
//
//
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2⋅x^T⋅H⋅x + f^T⋅x \\
// & \text{subject to} & conLB \leq A⋅x \leq conUB \\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
//
//
// The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
//
// Syntax : options= list("MaxIter", [---], "CpuTime", [---]);
// MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
// CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
// Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);
//
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
//
// exitflag=0 : Optimal Solution Found
// exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.
// exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.
// exitflag=3 : Stop at Tiny Step.
// exitflag=4 : Solved To Acceptable Level.
// exitflag=5 : Converged to a point of local infeasibility.
//
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
//
// output.iterations: The number of iterations performed during the search
// output.constrviolation: The max-norm of the constraint violation.
//
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
//
// lambda.lower: The Lagrange multipliers for the lower bound constraints.
// lambda.upper: The Lagrange multipliers for the upper bound constraints.
// lambda.eqlin: The Lagrange multipliers for the linear equality constraints.
// lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.
//
//
// Examples
// //Ref : example 14 :
// //https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf
// // min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2
// // such that
// // x1 + x2 <= 5,
// // x1 <= 3,
// // x1 >= 0,
// // x2 >= 0
// H = [2 0
// 0 8];
// f = [-8; -16];
// A = [1 1;1 0];
// conUB = [5;3];
// conLB = [-%inf; -%inf];
// lb = [0; 0];
// ub = [%inf; %inf];
// nbVar = 2;
// nbCon = 2;
// [xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
// //Press ENTER to continue
//
// Examples
// //Find x in R^6 such that:
// A= [1,-1,1,0,3,1;
// -1,0,-3,-4,5,6;
// 2,5,3,0,1,0
// 0,1,0,1,2,-1;
// -1,0,2,1,1,0];
// conLB=[1;2;3;-%inf;-%inf];
// conUB = [1;2;3;-1;2.5];
// lb=[-1000;-10000; 0; -1000; -1000; -1000];
// ub=[10000; 100; 1.5; 100; 100; 1000];
// //and minimize 0.5*x'⋅H⋅x + f'⋅x with
// f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
// nbVar = 6;
// nbCon = 5;
// x0 = repmat(0,nbVar,1);
// param = list("MaxIter", 300, "CpuTime", 100);
// [xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param)
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
//To check the number of argument given by user
if ( rhs < 9 | rhs > 11 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 9, 10 or 11"), "qpipopt", rhs);
error(errmsg)
end
nbVar = [];
nbCon = [];
H = [];
f = [];
A = [];
conLB = [];
conUB = [];
lb = [];
ub = [];
nbVar = varargin(1);
nbCon = varargin(2);
H = varargin(3);
f = varargin(4);
lb = varargin(5);
ub = varargin(6);
A = varargin(7);
conLB = varargin(8);
conUB = varargin(9);
if (size(lb,2)==0) then
lb = repmat(-%inf,nbVar,1);
end
if (size(ub,2)==0) then
ub = repmat(%inf,nbVar,1);
end
if (size(f,2)==0) then
f = repmat(0,nbVar,1);
end
if ( rhs<10 | size(varargin(10)) ==0 ) then
x0 = repmat(0,nbVar,1);
else
x0 = varargin(10);
end
if ( rhs<11 | size(varargin(11)) ==0 ) then
param = list();
else
param =varargin(11);
end
if (type(param) ~= 15) then
errmsg = msprintf(gettext("%s: param should be a list "), "qpipopt");
error(errmsg);
end
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipopt");
error(errmsg);
end
//Check type of variables
Checktype("qpipopt", nbVar, "nbVar", 1, "constant")
Checktype("qpipopt", nbCon, "nbCon", 2, "constant")
Checktype("qpipopt", H, "H", 3, "constant")
Checktype("qpipopt", f, "f", 4, "constant")
Checktype("qpipopt", lb, "lb", 5, "constant")
Checktype("qpipopt", ub, "lb", 6, "constant")
Checktype("qpipopt", A, "A", 7, "constant")
Checktype("qpipopt", conLB, "conlb", 8, "constant")
Checktype("qpipopt", conUB, "conub", 9, "constant")
Checktype("qpipopt", x0, "x0", 10, "constant")
options = list(..
"MaxIter" , [3000], ...
"CpuTime" , [600] ...
);
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case "maxiter" then
options(2*i) = param(2*i);
case "cputime" then
options(2*i) = param(2*i);
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
error(errmsg)
end
end
// Check if the user gives row vector
// and Changing it to a column matrix
if (size(f,2)== [nbVar]) then
f=f';
end
if (size(lb,2)== [nbVar]) then
lb = lb';
end
if (size(ub,2)== [nbVar]) then
ub = ub';
end
if (size(conUB,2)== [nbCon]) then
conUB = conUB';
end
if (size(conLB,2)== [nbCon]) then
conLB = conLB';
end
if (size(x0,2)== [nbVar]) then
x0=x0';
end
//IPOpt wants it in row matrix form
f = f';
lb = lb';
ub = ub';
conLB = conLB';
conUB = conUB';
x0 = x0';
//Checking the H matrix which needs to be a symmetric matrix
if ( ~isequal(H,H') ) then
errmsg = msprintf(gettext("%s: H is not a symmetric matrix"), "qpipopt");
error(errmsg);
end
//Check the size of H which should equal to the number of variable
if ( size(H) ~= [nbVar nbVar]) then
errmsg = msprintf(gettext("%s: The Size of H is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of p which should equal to the number of variable
if ( size(f,2) ~= [nbVar]) then
errmsg = msprintf(gettext("%s: The Size of f is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
if (nbCon) then
//Check the size of constraint which should equal to the number of variables
if ( size(A,2) ~= nbVar) then
errmsg = msprintf(gettext("%s: The size of constraints is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
end
//Check the number of constraint
if ( size(A,1) ~= nbCon) then
errmsg = msprintf(gettext("%s: The size of constraint matrix is not equal to the number of constraint given i.e. %d"), "qpipopt", nbCon);
error(errmsg);
end
//Check the size of Lower Bound which should equal to the number of variables
if ( size(lb,2) ~= nbVar) then
errmsg = msprintf(gettext("%s: The size of Lower Bound is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of Upper Bound which should equal to the number of variables
if ( size(ub,2) ~= nbVar) then
errmsg = msprintf(gettext("%s: The size of Upper Bound is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of constraints of Lower Bound which should equal to the number of constraints
if ( size(conLB,2) ~= nbCon) then
errmsg = msprintf(gettext("%s: The size of Lower Bound of constraints is not equal to the number of constraints"), "qpipopt");
error(errmsg);
end
//Check the size of constraints of Upper Bound which should equal to the number of constraints
if ( size(conUB,2) ~= nbCon) then
errmsg = msprintf(gettext("%s: The size of Upper Bound of constraints is not equal to the number of constraints"), "qpipopt");
error(errmsg);
end
//Check the size of initial of variables which should equal to the number of variables
if ( size(x0,2) ~= nbVar | size(x0,"*")>nbVar) then
warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "qpipopt");
warning(warnmsg);
x0 = repmat(0,1,nbVar);
end
//Check if the user gives a matrix instead of a vector
if ((size(f,1)~=1)& (size(f,2)~=1)) then
errmsg = msprintf(gettext("%s: f should be a vector"), "qpipopt");
error(errmsg);
end
if (size(lb,1)~=1)& (size(lb,2)~=1) then
errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "qpipopt");
error(errmsg);
end
if (size(ub,1)~=1)& (size(ub,2)~=1) then
errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "qpipopt");
error(errmsg);
end
if (nbCon) then
if ((size(conLB,1)~=1)& (size(b,2)~=1)) then
errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "qpipopt");
error(errmsg);
end
if (size(conUB,1)~=1)& (size(beq,2)~=1) then
errmsg = msprintf(gettext("%s: Constraint should be a vector"), "qpipopt");
error(errmsg);
end
end
// Check if the user gives infinity or negative infinity in conLB or conUB
for i = 1:nbCon
if (conLB(i) == %inf)
errmsg = msprintf(gettext("%s: Value of Lower Bound can not be infinity"), "qpipopt");
error(errmsg);
end
if (conUB(i) == -%inf)
errmsg = msprintf(gettext("%s: Value of Upper Bound can not be negative infinity"), "qpipopt");
error(errmsg);
end
end
for i = 1:nbVar
if(lb(i)>ub(i))
errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "lsqlin");
error(errmsg);
end
end
[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,A,conLB,conUB,lb,ub,x0,options);
xopt = xopt';
exitflag = status;
output = struct("Iterations" , [], ..
"ConstrViolation" ,[]);
output.Iterations = iter;
output.ConstrViolation = max([0;(conLB'-A*xopt);(A*xopt - conUB');(lb'-xopt);(xopt-ub')]);
lambda = struct("lower" , [], ..
"upper" , [], ..
"constraint" , []);
lambda.lower = Zl;
lambda.upper = Zu;
lambda.constraint = lmbda;
select status
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
case 2 then
printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
case 3 then
printf("\nStop at Tiny Step\n");
case 4 then
printf("\nSolved To Acceptable Level\n");
case 5 then
printf("\nConverged to a point of local infeasibility.\n");
case 6 then
printf("\nStopping optimization at current point as requested by user.\n");
case 7 then
printf("\nFeasible point for square problem found.\n");
case 8 then
printf("\nIterates diverging; problem might be unbounded.\n");
case 9 then
printf("\nRestoration Failed!\n");
case 10 then
printf("\nError in step computation (regularization becomes too large?)!\n");
case 12 then
printf("\nProblem has too few degrees of freedom.\n");
case 13 then
printf("\nInvalid option thrown back by Ipopt\n");
case 14 then
printf("\nNot enough memory.\n");
case 15 then
printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
break;
end
endfunction