// Copyright (C) 2015 - IIT Bombay - FOSSEE // // Author: Harpreet Singh // Organization: FOSSEE, IIT Bombay // Email: harpreet.mertia@gmail.com // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin) // Solves a linear quadratic problem. // // Calling Sequence // xopt = lsqlin(C,d,A,b) // xopt = lsqlin(C,d,A,b,Aeq,beq) // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub) // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param) // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... ) // // Parameters // C : a matrix of double, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x. // d : a vector of double, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations. // A : a vector of double, represents the linear coefficients in the inequality constraints // b : a vector of double, represents the linear coefficients in the inequality constraints // Aeq : a matrix of double, represents the linear coefficients in the equality constraints // beq : a vector of double, represents the linear coefficients in the equality constraints // LB : a vector of double, contains lower bounds of the variables. // UB : a vector of double, contains upper bounds of the variables. // x0 : a vector of double, contains initial guess of variables. // param : a list containing the the parameters to be set. // xopt : a vector of double, the computed solution of the optimization problem. // resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2. // residual : a vector of double, solution residuals returned as the vector C*x-d. // exitflag : Integer identifying the reason the algorithm terminated. // output : Structure containing information about the optimization. Right now it contains number of iteration. // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints. // // Description // Search the minimum of a constrained linear least square problem specified by : // // // \begin{eqnarray} // &\mbox{min}_{x} // & 1/2||C*x - d||_2^2 \\ // & \text{subject to} & A*x \leq b \\ // & & Aeq*x = beq \\ // & & lb \leq x \leq ub \\ // \end{eqnarray} // // // We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. // // Examples // //A simple linear least square example // C = [0.9501 0.7620 0.6153 0.4057 // 0.2311 0.4564 0.7919 0.9354 // 0.6068 0.0185 0.9218 0.9169 // 0.4859 0.8214 0.7382 0.4102 // 0.8912 0.4447 0.1762 0.8936]; // d = [0.0578 // 0.3528 // 0.8131 // 0.0098 // 0.1388]; // A = [0.2027 0.2721 0.7467 0.4659 // 0.1987 0.1988 0.4450 0.4186 // 0.6037 0.0152 0.9318 0.8462]; // b = [0.5251 // 0.2026 // 0.6721]; // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b) // // Press ENTER to continue // // Examples // //A basic example for equality, inequality and bounds // C = [0.9501 0.7620 0.6153 0.4057 // 0.2311 0.4564 0.7919 0.9354 // 0.6068 0.0185 0.9218 0.9169 // 0.4859 0.8214 0.7382 0.4102 // 0.8912 0.4447 0.1762 0.8936]; // d = [0.0578 // 0.3528 // 0.8131 // 0.0098 // 0.1388]; // A =[0.2027 0.2721 0.7467 0.4659 // 0.1987 0.1988 0.4450 0.4186 // 0.6037 0.0152 0.9318 0.8462]; // b =[0.5251 // 0.2026 // 0.6721]; // Aeq = [3 5 7 9]; // beq = 4; // lb = -0.1*ones(4,1); // ub = 2*ones(4,1); // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub) // Authors // Harpreet Singh //To check the number of input and output argument [lhs , rhs] = argn(); //To check the number of argument given by user if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 10 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [4 6 8 9 10]"), "lsqlin", rhs); error(errmsg) end C = varargin(1); d = varargin(2); A = varargin(3); b = varargin(4); nbVar = size(C,2); if ( rhs<5 ) then Aeq = [] beq = [] else Aeq = varargin(5); beq = varargin(6); end if ( rhs<7 ) then LB = repmat(-%inf,nbVar,1); UB = repmat(%inf,nbVar,1); else LB = varargin(7); UB = varargin(8); end if ( rhs<9 | size(varargin(9)) ==0 ) then x0 = repmat(0,nbVar,1) else x0 = varargin(9); end if ( rhs<10 | size(varargin(10)) ==0 ) then param = list(); else param =varargin(10); end if (size(LB,2)==0) then LB = repmat(-%inf,nbVar,1); end if (size(UB,2)==0) then UB = repmat(%inf,nbVar,1); end if (type(param) ~= 15) then errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin"); error(errmsg); end if (modulo(size(param),2)) then errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin"); error(errmsg); end options = list( "MaxIter" , [3000], ... "CpuTime" , [600] ... ); for i = 1:(size(param))/2 select param(2*i-1) case "MaxIter" then options(2*i) = param(2*i); case "CpuTime" then options(2*i) = param(2*i); else errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1)); error(errmsg) end end nbConInEq = size(A,1); nbConEq = size(Aeq,1); // Check if the user gives row vector // and Changing it to a column matrix if (size(d,2)== [nbVar]) then d=d'; end if (size(LB,2)== [nbVar]) then LB = LB'; end if (size(UB,2)== [nbVar]) then UB = UB'; end if (size(b,2)==nbConInEq) then b = b'; end if (size(beq,2)== nbConEq) then beq = beq'; end if (size(x0,2)== [nbVar]) then x0=x0'; end //Check the size of d which should equal to the number of variable if ( size(d,1) ~= size(C,1)) then errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin"); error(errmsg); end //Check the size of inequality constraint which should be equal to the number of variables if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of d"), "lsqlin"); error(errmsg); end //Check the size of equality constraint which should be equal to the number of variables if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of d"), "lsqlin"); error(errmsg); end //Check the size of Lower Bound which should be equal to the number of variables if ( size(LB,1) ~= nbVar) then errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "lsqlin"); error(errmsg); end //Check the size of Upper Bound which should equal to the number of variables if ( size(UB,1) ~= nbVar) then errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "lsqlin"); error(errmsg); end //Check the size of constraints of Lower Bound which should equal to the number of constraints if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elementsof b"), "lsqlin"); error(errmsg); end //Check the size of constraints of Upper Bound which should equal to the number of constraints if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "lsqlin"); error(errmsg); end //Check the size of initial of variables which should equal to the number of variables if ( size(x0,1) ~= nbVar) then warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "lsqlin"); warning(warnmsg); end //Check if the user gives a matrix instead of a vector if ((size(d,1)~=1)& (size(d,2)~=1)) then errmsg = msprintf(gettext("%s: d should be a vector"), "lsqlin"); error(errmsg); end if (size(LB,1)~=1)& (size(LB,2)~=1) then errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "lsqlin"); error(errmsg); end if (size(UB,1)~=1)& (size(UB,2)~=1) then errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "lsqlin"); error(errmsg); end if (nbConInEq) then if ((size(b,1)~=1)& (size(b,2)~=1)) then errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "lsqlin"); error(errmsg); end end if (nbConEq) then if (size(beq,1)~=1)& (size(beq,2)~=1) then errmsg = msprintf(gettext("%s: Constraint should be a vector"), "lsqlin"); error(errmsg); end end for i = 1:nbConInEq if (b(i) == -%inf) errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "qpipoptmat"); error(errmsg); end end for i = 1:nbConEq if (beq(i) == -%inf) errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "qpipoptmat"); error(errmsg); end end //Converting it into Quadratic Programming Problem Q = C'*C; p = [-C'*d]'; op_add = d'*d; LB = LB'; UB = UB'; x0 = x0'; conMatrix = [Aeq;A]; nbCon = size(conMatrix,1); conLB = [beq; repmat(-%inf,nbConInEq,1)]'; conUB = [beq;b]' ; [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options); xopt = xopt'; residual = -1*(C*xopt-d); resnorm = residual'*residual; exitflag = status; output = struct("Iterations" , []); output.Iterations = iter; lambda = struct("lower" , [], .. "upper" , [], .. "eqlin" , [], .. "ineqlin" , []); lambda.lower = Zl; lambda.upper = Zu; lambda.eqlin = lmbda(1:nbConEq); lambda.ineqlin = lmbda(nbConEq+1:nbCon); select status case 0 then printf("\nOptimal Solution Found.\n"); case 1 then printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n"); case 2 then printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n"); case 3 then printf("\nStop at Tiny Step\n"); case 4 then printf("\nSolved To Acceptable Level\n"); case 5 then printf("\nConverged to a point of local infeasibility.\n"); case 6 then printf("\nStopping optimization at current point as requested by user.\n"); case 7 then printf("\nFeasible point for square problem found.\n"); case 8 then printf("\nIterates diverging; problem might be unbounded.\n"); case 9 then printf("\nRestoration Failed!\n"); case 10 then printf("\nError in step computation (regularization becomes too large?)!\n"); case 12 then printf("\nProblem has too few degrees of freedom.\n"); case 13 then printf("\nInvalid option thrown back by IPOpt\n"); case 14 then printf("\nNot enough memory.\n"); case 15 then printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.\n"); else printf("\nInvalid status returned. Notify the Toolbox authors\n"); break; end endfunction