// Copyright (C) 2015 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function [xopt,fopt,exitflag,gradient,hessian] = intfmincon (varargin) // Solves a constrainted multi-variable mixed integer non linear programming problem // // Calling Sequence // xopt = intfmincon(f,x0,intcon,A,b) // xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq) // xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub) // xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc) // xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options) // [xopt,fopt] = intfmincon(.....) // [xopt,fopt,exitflag]= intfmincon(.....) // [xopt,fopt,exitflag,gradient]=intfmincon(.....) // [xopt,fopt,exitflag,gradient,hessian]=intfmincon(.....) // // Parameters // f : a function, representing the objective function of the problem // x0 : a vector of doubles, containing the starting values of variables. // intcon : a vector of integers, represents which variables are constrained to be integers // A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. // b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. // Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. // beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. // lb : Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub. // ub : Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub. // nlc : a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function. // options : a list, containing the option for user to specify. See below for details. // xopt : a vector of doubles, containing the the computed solution of the optimization problem. // fopt : a scalar of double, containing the the function value at x. // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details. // gradient : a vector of doubles, containing the Objective's gradient of the solution. // hessian : a matrix of doubles, containing the Objective's hessian of the solution. // // Description // Search the minimum of a mixed integer constrained optimization problem specified by : // Find the minimum of f(x) such that // // // \begin{eqnarray} // &\mbox{min}_{x} // & f(x) \\ // & \text{subject to} & A*x \leq b \\ // & & Aeq*x \ = beq\\ // & & c(x) \leq 0\\ // & & ceq(x) \ = 0\\ // & & lb \leq x \leq ub \\ // & & x_i \in \!\, \mathbb{Z}, i \in \!\, I // \end{eqnarray} // // // The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++. // // The options allows the user to set various parameters of the Optimization problem. // It should be defined as type "list" and contains the following fields. // // Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" ); // IntegerTolerance : a Scalar, a number with that value of an integer is considered integer.. // MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search. // CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take. // AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached. // MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take. // gradobj : a string, to turn on or off the user supplied objective gradient. // hessian : a Scalar, to turn on or off the user supplied objective hessian. // Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off") // // // The exitflag allows to know the status of the optimization which is given back by Ipopt. // // exitflag=0 : Optimal Solution Found // exitflag=1 : InFeasible Solution. // exitflag=2 : Objective Function is Continuous Unbounded. // exitflag=3 : Limit Exceeded. // exitflag=4 : User Interrupt. // exitflag=5 : MINLP Error. // // // For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin // // Examples // //Find x in R^2 such that it minimizes: // //f(x)= -x1 -x2/3 // //x0=[0,0] // //constraint-1 (c1): x1 + x2 <= 2 // //constraint-2 (c2): x1 + x2/4 <= 1 // //constraint-3 (c3): x1 - x2 <= 2 // //constraint-4 (c4): -x1/4 - x2 <= 1 // //constraint-5 (c5): -x1 - x2 <= -1 // //constraint-6 (c6): -x1 + x2 <= 2 // //constraint-7 (c7): x1 + x2 = 2 // //Objective function to be minimised // function [y,dy]=f(x) // y=-x(1)-x(2)/3; // dy= [-1,-1/3]; // endfunction // //Starting point, linear constraints and variable bounds // x0=[0 , 0]; // intcon = [1] // A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; // b=[2;1;2;1;-1;2]; // Aeq=[1,1]; // beq=[2]; // lb=[]; // ub=[]; // nlc=[]; // //Options // options=list("GradObj", "on"); // //Calling Ipopt // [x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options) // // Press ENTER to continue // // Examples // //Find x in R^3 such that it minimizes: // //f(x)= x1*x2 + x2*x3 // //x0=[0.1 , 0.1 , 0.1] // //constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2 // //constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10 // //Objective function to be minimised // function [y,dy]=f(x) // y=x(1)*x(2)+x(2)*x(3); // dy= [x(2),x(1)+x(3),x(2)]; // endfunction // //Starting point, linear constraints and variable bounds // x0=[0.1 , 0.1 , 0.1]; // intcon = [2] // A=[]; // b=[]; // Aeq=[]; // beq=[]; // lb=[]; // ub=[]; // //Nonlinear constraints // function [c,ceq,cg,cgeq]=nlc(x) // c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10]; // ceq = []; // cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)]; // cgeq=[]; // endfunction // //Options // options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on"); // //Calling Ipopt // [x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options) // // Press ENTER to continue // // Examples // //The below problem is an unbounded problem: // //Find x in R^3 such that it minimizes: // //f(x)= -(x1^2 + x2^2 + x3^2) // //x0=[0.1 , 0.1 , 0.1] // // x1 <= 0 // // x2 <= 0 // // x3 <= 0 // //Objective function to be minimised // function y=f(x) // y=-(x(1)^2+x(2)^2+x(3)^2); // endfunction // //Starting point, linear constraints and variable bounds // x0=[0.1 , 0.1 , 0.1]; // intcon = [3] // A=[]; // b=[]; // Aeq=[]; // beq=[]; // lb=[]; // ub=[0,0,0]; // //Options // options=list("MaxIter", [1500], "CpuTime", [500]); // //Calling Ipopt // [x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,[],options) // // Press ENTER to continue // // Examples // //The below problem is an infeasible problem: // //Find x in R^3 such that in minimizes: // //f(x)=x1*x2 + x2*x3 // //x0=[1,1,1] // //constraint-1 (c1): x1^2 <= 1 // //constraint-2 (c2): x1^2 + x2^2 <= 1 // //constraint-3 (c3): x3^2 <= 1 // //constraint-4 (c4): x1^3 = 0.5 // //constraint-5 (c5): x2^2 + x3^2 = 0.75 // // 0 <= x1 <=0.6 // // 0.2 <= x2 <= inf // // -inf <= x3 <= 1 // //Objective function to be minimised // function [y,dy]=f(x) // y=x(1)*x(2)+x(2)*x(3); // dy= [x(2),x(1)+x(3),x(2)]; // endfunction // //Starting point, linear constraints and variable bounds // x0=[1,1,1]; // intcon = [2] // A=[]; // b=[]; // Aeq=[]; // beq=[]; // lb=[0 0.2,-%inf]; // ub=[0.6 %inf,1]; // //Nonlinear constraints // function [c,ceq,cg,cgeq]=nlc(x) // c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1]; // ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75]; // cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)]; // cgeq = [3*x(1)^2,0,0;0,2*x(2),2*x(3)]; // endfunction // //Options // options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on"); // //Calling Ipopt // [x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options) // // Press ENTER to continue // Authors // Harpreet Singh //To check the number of input and output arguments [lhs , rhs] = argn(); //To check the number of arguments given by the user if ( rhs<4 | rhs>11 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be int [4 5] "), "intfmincon", rhs); error(errmsg); end //Storing the Input Parameters fun = varargin(1); x0 = varargin(2); intcon = varargin(3); A = varargin(4); b = varargin(5); Aeq = []; beq = []; lb = []; ub = []; nlc = []; if (rhs>5) then Aeq = varargin(6); beq = varargin(7); end if (rhs>7) then lb = varargin(8); ub = varargin(9); end if (rhs>9) then nlc = varargin(10); end param = list(); //To check whether options has been entered by user if ( rhs> 10) then param =varargin(11); end //To check whether the Input arguments Checktype("intfmincon", fun, "fun", 1, "function"); Checktype("intfmincon", x0, "x0", 2, "constant"); Checktype("intfmincon", intcon, "intcon", 3, "constant"); Checktype("intfmincon", A, "A", 4, "constant"); Checktype("intfmincon", b, "b", 5, "constant"); Checktype("intfmincon", Aeq, "Aeq", 6, "constant"); Checktype("intfmincon", beq, "beq", 7, "constant"); Checktype("intfmincon", lb, "lb", 8, "constant"); Checktype("intfmincon", ub, "ub", 9, "constant"); Checktype("intfmincon", nlc, "nlc", 10, ["constant","function"]); Checktype("intfmincon", param, "options", 11, "list"); nbVar = size(x0,"*"); if(nbVar==0) then errmsg = msprintf(gettext("%s: x0 cannot be an empty"), "intfmincon"); error(errmsg); end if(size(lb,"*")==0) then lb = repmat(-%inf,nbVar,1); end if(size(ub,"*")==0) then ub = repmat(%inf,nbVar,1); end //////////////// To Check linear constraints ///////// //To check for correct size of A(3rd paramter) if(size(A,2)~=nbVar & size(A,2)~=0) then errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear inequality constraints X No of Variables) or an Empty Matrix for Linear Inequality Constraint coefficient Matrix A"), "intfmincon"); error(errmsg); end nbConInEq=size(A,"r"); //To check for the correct size of Aeq (5th paramter) if(size(Aeq,2)~=nbVar & size(Aeq,2)~=0) then errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear equality constraints X No of Variables) or an Empty Matrix for Linear Equality Constraint coefficient Matrix Aeq"), "intfmincon"); error(errmsg); end nbConEq=size(Aeq,"r"); ///////////////// To check vectors ///////////////// Checkvector("intfmincon", x0, "x0", 2, nbVar); x0 = x0(:); if(size(intcon,"*")) then Checkvector("intfmincon", intcon, "intcon", 3, size(intcon,"*")) intcon = intcon(:); end if(nbConInEq) then Checkvector("intfmincon", b, "b", 5, nbConInEq); b = b(:); end if(nbConEq) then Checkvector("intfmincon", beq, "beq", 7, nbConEq); beq = beq(:); end Checkvector("intfmincon", lb, "lb", 8, nbVar); lb = lb(:); Checkvector("intfmincon", ub, "ub", 9, nbVar); ub = ub(:); /////////////// To check integer ////////////////////// for i=1:size(intcon,1) if(intcon(i)>nbVar) then errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfmincon"); error(errmsg); end if (intcon(i)<0) then errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfmincon"); error(errmsg); end if(modulo(intcon(i),1)) then errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfmincon"); error(errmsg); end end options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off",'gradcon',"off") //Pushing param into default value for i = 1:(size(param))/2 select convstr(param(2*i-1),'l') case 'integertolerance' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant"); options(2) = param(2*i); case 'maxnodes' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant"); options(4) = param(2*i); case 'cputime' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant"); options(6) = param(2*i); case 'allowablegap' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant"); options(8) = param(2*i); case 'maxiter' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant"); options(10) = param(2*i); case 'gradobj' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "string"); if(convstr(param(2*i),'l') == "on") then options(12) = "on" elseif(convstr(param(2*i),'l') == "off") then options(12) = "off" else error(999, 'Unknown string passed in gradobj.'); end case 'hessian' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "function"); options(14) = param(2*i); case 'gradcon' then Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "string"); if(convstr(param(2*i),'l') == "on") then options(16) = "on" elseif(convstr(param(2*i),'l') == "off") then options(16) = "off" else error(999, 'Unknown string passed in gradcon.'); end else error(999, 'Unknown string argument passed.'); end end ///////////////// Functions Check ///////////////// //To check the match between f (1st Parameter) and x0 (2nd Parameter) if(execstr('init=fun(x0)','errcatch')==21) then errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "intfmincon"); error(errmsg); end if(options(12) == "on") then if(execstr('[grad_y,grad_dy]=fun(x0)','errcatch')==59) then errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfmincon"); error(errmsg); end if(grad_dy<>[]) then Checkvector("intfmincon_options", grad_dy, "dy", 12, nbVar); end end if(options(14) == "on") then if(execstr('[hessian_y,hessian_dy,hessian]=fun(x0)','errcatch')==59) then errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfmincon"); error(errmsg); end if ( ~isequal(size(hessian) == [nbVar nbVar]) ) then errmsg = msprintf(gettext("%s: Size of hessian should be nbVar X nbVar"), "intfmincon"); error(errmsg); end end numNlic = 0; numNlec = 0; numNlc = 0; if (type(nlc) == 13 | type(nlc) == 11) then [sample_c,sample_ceq] = nlc(x0); if(execstr('[sample_c,sample_ceq] = nlc(x0)','errcatch')==21) then errmsg = msprintf(gettext("%s: Non-Linear Constraint function and x0 did not match"), "intfmincon"); error(errmsg); end numNlic = size(sample_c,"*"); numNlec = size(sample_ceq,"*"); numNlc = numNlic + numNlec; end /////////////// Creating conLb and conUb //////////////////////// conLb = [repmat(-%inf,numNlic,1);repmat(0,numNlec,1);repmat(-%inf,nbConInEq,1);beq;] conUb = [repmat(0,numNlic,1);repmat(0,numNlec,1);b;beq;] //Converting the User defined Objective function into Required form (Error Detectable) function [y,check] = _f(x) try y=fun(x) [y,check] = checkIsreal(y) catch y=0; check=1; end endfunction //Defining an inbuilt Objective gradient function function [dy,check] = _gradf(x) if (options(12) =="on") then try [y,dy]=fun(x) [dy,check] = checkIsreal(dy) catch dy = 0; check=1; end else try dy=numderivative(fun,x) [dy,check] = checkIsreal(dy) catch dy=0; check=1; end end endfunction function [y,check] = _addnlc(x) x= x(:) c = [] ceq = [] try if((type(nlc) == 13 | type(nlc) == 11) & numNlc~=0) then [c,ceq]=nlc(x) end ylin = [A*x;Aeq*x]; y = [c(:);ceq(:);ylin(:);]; [y,check] = checkIsreal(y) catch y=0; check=1; end endfunction //Defining an inbuilt jacobian of constraints function function [dy,check] = _gradnlc(x) if (options(16) =="on") then try [y1,y2,dy1,dy2]=nlc(x) //Adding derivative of Linear Constraint dylin = [A;Aeq] dy = [dy1;dy2;dylin]; [dy,check] = checkIsreal(dy) catch dy = 0; check=1; end else try dy=numderivative(_addnlc,x) [dy,check] = checkIsreal(dy) catch dy=0; check=1; end end endfunction //Defining a function to calculate Hessian if the respective user entry is OFF function [hessy,check]=_gradhess(x,obj_factor,lambda) x=x(:); if (type(options(14)) == "function") then try [obj,dy,hessy] = fun(x,obj_factor,lambda) [hessy,check] = checkIsreal(hessy) catch hessy = 0; check=1; end else try [dy,hessfy]=numderivative(_f,x) hessfy = matrix(hessfy,nbVar,nbVar) if((type(nlc) == 13 | type(nlc) == 11) & numNlc~=0) then [dy,hessny]=numderivative(nlc,x) end hessianc = [] for i = 1:numNlc hessianc = hessianc + lambda(i)*matrix(hessny(i,:),nbVar,nbVar) end hessy = obj_factor*hessfy + hessianc; [hessy,check] = checkIsreal(hessy) catch hessy=0; check=1; end end endfunction intconsize = size(intcon,"*") [xopt,fopt,exitflag] = inter_fmincon(_f,_gradf,_addnlc,_gradnlc,_gradhess,x0,lb,ub,conLb,conUb,intcon,options,nbConInEq+nbConEq); //In the cases of the problem not being solved, return NULL to the output matrices if( exitflag~=0 & exitflag~=3 ) then gradient = []; hessian = []; else [ gradient, hessian] = numderivative(_f, xopt) end //To print output message select exitflag case 0 then printf("\nOptimal Solution Found.\n"); case 1 then printf("\nInFeasible Solution.\n"); case 2 then printf("\nObjective Function is Continuous Unbounded.\n"); case 3 then printf("\Limit Exceeded.\n"); case 4 then printf("\nUser Interrupt.\n"); case 5 then printf("\nMINLP Error.\n"); else printf("\nInvalid status returned. Notify the Toolbox authors\n"); break; end endfunction function [y, check] = checkIsreal(x) if ((~isreal(x))) then y = 0 check=1; else y = x; check=0; end endfunction