// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,fopt,exitflag,gradient,hessian] = intfmincon (varargin)
// Solves a constrainted multi-variable mixed integer non linear programming problem
//
// Calling Sequence
// xopt = intfmincon(f,x0,intcon,A,b)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// [xopt,fopt] = intfmincon(.....)
// [xopt,fopt,exitflag]= intfmincon(.....)
// [xopt,fopt,exitflag,gradient]=intfmincon(.....)
// [xopt,fopt,exitflag,gradient,hessian]=intfmincon(.....)
//
// Parameters
// f : a function, representing the objective function of the problem
// x0 : a vector of doubles, containing the starting values of variables.
// intcon : a vector of integers, represents which variables are constrained to be integers
// A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// lb : Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
// ub : Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
// nlc : a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.
// options : a list, containing the option for user to specify. See below for details.
// xopt : a vector of doubles, containing the the computed solution of the optimization problem.
// fopt : a scalar of double, containing the the function value at x.
// exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
// gradient : a vector of doubles, containing the Objective's gradient of the solution.
// hessian : a matrix of doubles, containing the Objective's hessian of the solution.
//
// Description
// Search the minimum of a mixed integer constrained optimization problem specified by :
// Find the minimum of f(x) such that
//
//
// \begin{eqnarray}
// &\mbox{min}_{x}
// & f(x) \\
// & \text{subject to} & A*x \leq b \\
// & & Aeq*x \ = beq\\
// & & c(x) \leq 0\\
// & & ceq(x) \ = 0\\
// & & lb \leq x \leq ub \\
// & & x_i \in \!\, \mathbb{Z}, i \in \!\, I
// \end{eqnarray}
//
//
// The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
//
// Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
// IntegerTolerance : a Scalar, a number with that value of an integer is considered integer..
// MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search.
// CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
// AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached.
// MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
// gradobj : a string, to turn on or off the user supplied objective gradient.
// hessian : a Scalar, to turn on or off the user supplied objective hessian.
// Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
//
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
//
// exitflag=0 : Optimal Solution Found
// exitflag=1 : InFeasible Solution.
// exitflag=2 : Objective Function is Continuous Unbounded.
// exitflag=3 : Limit Exceeded.
// exitflag=4 : User Interrupt.
// exitflag=5 : MINLP Error.
//
//
// For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin
//
// Examples
// //Find x in R^2 such that it minimizes:
// //f(x)= -x1 -x2/3
// //x0=[0,0]
// //constraint-1 (c1): x1 + x2 <= 2
// //constraint-2 (c2): x1 + x2/4 <= 1
// //constraint-3 (c3): x1 - x2 <= 2
// //constraint-4 (c4): -x1/4 - x2 <= 1
// //constraint-5 (c5): -x1 - x2 <= -1
// //constraint-6 (c6): -x1 + x2 <= 2
// //constraint-7 (c7): x1 + x2 = 2
// //Objective function to be minimised
// function [y,dy]=f(x)
// y=-x(1)-x(2)/3;
// dy= [-1,-1/3];
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[0 , 0];
// intcon = [1]
// A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
// b=[2;1;2;1;-1;2];
// Aeq=[1,1];
// beq=[2];
// lb=[];
// ub=[];
// nlc=[];
// //Options
// options=list("GradObj", "on");
// //Calling Ipopt
// [x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// // Press ENTER to continue
//
// Examples
// //Find x in R^3 such that it minimizes:
// //f(x)= x1*x2 + x2*x3
// //x0=[0.1 , 0.1 , 0.1]
// //constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
// //constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
// //Objective function to be minimised
// function [y,dy]=f(x)
// y=x(1)*x(2)+x(2)*x(3);
// dy= [x(2),x(1)+x(3),x(2)];
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[0.1 , 0.1 , 0.1];
// intcon = [2]
// A=[];
// b=[];
// Aeq=[];
// beq=[];
// lb=[];
// ub=[];
// //Nonlinear constraints
// function [c,ceq,cg,cgeq]=nlc(x)
// c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
// ceq = [];
// cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
// cgeq=[];
// endfunction
// //Options
// options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
// //Calling Ipopt
// [x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// // Press ENTER to continue
//
// Examples
// //The below problem is an unbounded problem:
// //Find x in R^3 such that it minimizes:
// //f(x)= -(x1^2 + x2^2 + x3^2)
// //x0=[0.1 , 0.1 , 0.1]
// // x1 <= 0
// // x2 <= 0
// // x3 <= 0
// //Objective function to be minimised
// function y=f(x)
// y=-(x(1)^2+x(2)^2+x(3)^2);
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[0.1 , 0.1 , 0.1];
// intcon = [3]
// A=[];
// b=[];
// Aeq=[];
// beq=[];
// lb=[];
// ub=[0,0,0];
// //Options
// options=list("MaxIter", [1500], "CpuTime", [500]);
// //Calling Ipopt
// [x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,[],options)
// // Press ENTER to continue
//
// Examples
// //The below problem is an infeasible problem:
// //Find x in R^3 such that in minimizes:
// //f(x)=x1*x2 + x2*x3
// //x0=[1,1,1]
// //constraint-1 (c1): x1^2 <= 1
// //constraint-2 (c2): x1^2 + x2^2 <= 1
// //constraint-3 (c3): x3^2 <= 1
// //constraint-4 (c4): x1^3 = 0.5
// //constraint-5 (c5): x2^2 + x3^2 = 0.75
// // 0 <= x1 <=0.6
// // 0.2 <= x2 <= inf
// // -inf <= x3 <= 1
// //Objective function to be minimised
// function [y,dy]=f(x)
// y=x(1)*x(2)+x(2)*x(3);
// dy= [x(2),x(1)+x(3),x(2)];
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[1,1,1];
// intcon = [2]
// A=[];
// b=[];
// Aeq=[];
// beq=[];
// lb=[0 0.2,-%inf];
// ub=[0.6 %inf,1];
// //Nonlinear constraints
// function [c,ceq,cg,cgeq]=nlc(x)
// c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
// ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
// cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
// cgeq = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
// endfunction
// //Options
// options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
// //Calling Ipopt
// [x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// // Press ENTER to continue
// Authors
// Harpreet Singh
//To check the number of input and output arguments
[lhs , rhs] = argn();
//To check the number of arguments given by the user
if ( rhs<4 | rhs>11 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be int [4 5] "), "intfmincon", rhs);
error(errmsg);
end
//Storing the Input Parameters
fun = varargin(1);
x0 = varargin(2);
intcon = varargin(3);
A = varargin(4);
b = varargin(5);
Aeq = [];
beq = [];
lb = [];
ub = [];
nlc = [];
if (rhs>5) then
Aeq = varargin(6);
beq = varargin(7);
end
if (rhs>7) then
lb = varargin(8);
ub = varargin(9);
end
if (rhs>9) then
nlc = varargin(10);
end
param = list();
//To check whether options has been entered by user
if ( rhs> 10) then
param =varargin(11);
end
//To check whether the Input arguments
Checktype("intfmincon", fun, "fun", 1, "function");
Checktype("intfmincon", x0, "x0", 2, "constant");
Checktype("intfmincon", intcon, "intcon", 3, "constant");
Checktype("intfmincon", A, "A", 4, "constant");
Checktype("intfmincon", b, "b", 5, "constant");
Checktype("intfmincon", Aeq, "Aeq", 6, "constant");
Checktype("intfmincon", beq, "beq", 7, "constant");
Checktype("intfmincon", lb, "lb", 8, "constant");
Checktype("intfmincon", ub, "ub", 9, "constant");
Checktype("intfmincon", nlc, "nlc", 10, ["constant","function"]);
Checktype("intfmincon", param, "options", 11, "list");
nbVar = size(x0,"*");
if(nbVar==0) then
errmsg = msprintf(gettext("%s: x0 cannot be an empty"), "intfmincon");
error(errmsg);
end
if(size(lb,"*")==0) then
lb = repmat(-%inf,nbVar,1);
end
if(size(ub,"*")==0) then
ub = repmat(%inf,nbVar,1);
end
//////////////// To Check linear constraints /////////
//To check for correct size of A(3rd paramter)
if(size(A,2)~=nbVar & size(A,2)~=0) then
errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear inequality constraints X No of Variables) or an Empty Matrix for Linear Inequality Constraint coefficient Matrix A"), "intfmincon");
error(errmsg);
end
nbConInEq=size(A,"r");
//To check for the correct size of Aeq (5th paramter)
if(size(Aeq,2)~=nbVar & size(Aeq,2)~=0) then
errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear equality constraints X No of Variables) or an Empty Matrix for Linear Equality Constraint coefficient Matrix Aeq"), "intfmincon");
error(errmsg);
end
nbConEq=size(Aeq,"r");
///////////////// To check vectors /////////////////
Checkvector("intfmincon", x0, "x0", 2, nbVar);
x0 = x0(:);
if(size(intcon,"*")) then
Checkvector("intfmincon", intcon, "intcon", 3, size(intcon,"*"))
intcon = intcon(:);
end
if(nbConInEq) then
Checkvector("intfmincon", b, "b", 5, nbConInEq);
b = b(:);
end
if(nbConEq) then
Checkvector("intfmincon", beq, "beq", 7, nbConEq);
beq = beq(:);
end
Checkvector("intfmincon", lb, "lb", 8, nbVar);
lb = lb(:);
Checkvector("intfmincon", ub, "ub", 9, nbVar);
ub = ub(:);
/////////////// To check integer //////////////////////
for i=1:size(intcon,1)
if(intcon(i)>nbVar) then
errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfmincon");
error(errmsg);
end
if (intcon(i)<0) then
errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfmincon");
error(errmsg);
end
if(modulo(intcon(i),1)) then
errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfmincon");
error(errmsg);
end
end
options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off",'gradcon',"off")
//Pushing param into default value
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case 'integertolerance' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(2) = param(2*i);
case 'maxnodes' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(4) = param(2*i);
case 'cputime' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(6) = param(2*i);
case 'allowablegap' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(8) = param(2*i);
case 'maxiter' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(10) = param(2*i);
case 'gradobj' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "string");
if(convstr(param(2*i),'l') == "on") then
options(12) = "on"
elseif(convstr(param(2*i),'l') == "off") then
options(12) = "off"
else
error(999, 'Unknown string passed in gradobj.');
end
case 'hessian' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "function");
options(14) = param(2*i);
case 'gradcon' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "string");
if(convstr(param(2*i),'l') == "on") then
options(16) = "on"
elseif(convstr(param(2*i),'l') == "off") then
options(16) = "off"
else
error(999, 'Unknown string passed in gradcon.');
end
else
error(999, 'Unknown string argument passed.');
end
end
///////////////// Functions Check /////////////////
//To check the match between f (1st Parameter) and x0 (2nd Parameter)
if(execstr('init=fun(x0)','errcatch')==21) then
errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "intfmincon");
error(errmsg);
end
if(options(12) == "on") then
if(execstr('[grad_y,grad_dy]=fun(x0)','errcatch')==59) then
errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfmincon");
error(errmsg);
end
if(grad_dy<>[]) then
Checkvector("intfmincon_options", grad_dy, "dy", 12, nbVar);
end
end
if(options(14) == "on") then
if(execstr('[hessian_y,hessian_dy,hessian]=fun(x0)','errcatch')==59) then
errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfmincon");
error(errmsg);
end
if ( ~isequal(size(hessian) == [nbVar nbVar]) ) then
errmsg = msprintf(gettext("%s: Size of hessian should be nbVar X nbVar"), "intfmincon");
error(errmsg);
end
end
numNlic = 0;
numNlec = 0;
numNlc = 0;
if (type(nlc) == 13 | type(nlc) == 11) then
[sample_c,sample_ceq] = nlc(x0);
if(execstr('[sample_c,sample_ceq] = nlc(x0)','errcatch')==21) then
errmsg = msprintf(gettext("%s: Non-Linear Constraint function and x0 did not match"), "intfmincon");
error(errmsg);
end
numNlic = size(sample_c,"*");
numNlec = size(sample_ceq,"*");
numNlc = numNlic + numNlec;
end
/////////////// Creating conLb and conUb ////////////////////////
conLb = [repmat(-%inf,numNlic,1);repmat(0,numNlec,1);repmat(-%inf,nbConInEq,1);beq;]
conUb = [repmat(0,numNlic,1);repmat(0,numNlec,1);b;beq;]
//Converting the User defined Objective function into Required form (Error Detectable)
function [y,check] = _f(x)
try
y=fun(x)
[y,check] = checkIsreal(y)
catch
y=0;
check=1;
end
endfunction
//Defining an inbuilt Objective gradient function
function [dy,check] = _gradf(x)
if (options(12) =="on") then
try
[y,dy]=fun(x)
[dy,check] = checkIsreal(dy)
catch
dy = 0;
check=1;
end
else
try
dy=numderivative(fun,x)
[dy,check] = checkIsreal(dy)
catch
dy=0;
check=1;
end
end
endfunction
function [y,check] = _addnlc(x)
x= x(:)
c = []
ceq = []
try
if((type(nlc) == 13 | type(nlc) == 11) & numNlc~=0) then
[c,ceq]=nlc(x)
end
ylin = [A*x;Aeq*x];
y = [c(:);ceq(:);ylin(:);];
[y,check] = checkIsreal(y)
catch
y=0;
check=1;
end
endfunction
//Defining an inbuilt jacobian of constraints function
function [dy,check] = _gradnlc(x)
if (options(16) =="on") then
try
[y1,y2,dy1,dy2]=nlc(x)
//Adding derivative of Linear Constraint
dylin = [A;Aeq]
dy = [dy1;dy2;dylin];
[dy,check] = checkIsreal(dy)
catch
dy = 0;
check=1;
end
else
try
dy=numderivative(_addnlc,x)
[dy,check] = checkIsreal(dy)
catch
dy=0;
check=1;
end
end
endfunction
//Defining a function to calculate Hessian if the respective user entry is OFF
function [hessy,check]=_gradhess(x,obj_factor,lambda)
x=x(:);
if (type(options(14)) == "function") then
try
[obj,dy,hessy] = fun(x,obj_factor,lambda)
[hessy,check] = checkIsreal(hessy)
catch
hessy = 0;
check=1;
end
else
try
[dy,hessfy]=numderivative(_f,x)
hessfy = matrix(hessfy,nbVar,nbVar)
if((type(nlc) == 13 | type(nlc) == 11) & numNlc~=0) then
[dy,hessny]=numderivative(nlc,x)
end
hessianc = []
for i = 1:numNlc
hessianc = hessianc + lambda(i)*matrix(hessny(i,:),nbVar,nbVar)
end
hessy = obj_factor*hessfy + hessianc;
[hessy,check] = checkIsreal(hessy)
catch
hessy=0;
check=1;
end
end
endfunction
intconsize = size(intcon,"*")
[xopt,fopt,exitflag] = inter_fmincon(_f,_gradf,_addnlc,_gradnlc,_gradhess,x0,lb,ub,conLb,conUb,intcon,options,nbConInEq+nbConEq);
//In the cases of the problem not being solved, return NULL to the output matrices
if( exitflag~=0 & exitflag~=3 ) then
gradient = [];
hessian = [];
else
[ gradient, hessian] = numderivative(_f, xopt)
end
//To print output message
select exitflag
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
printf("\nInFeasible Solution.\n");
case 2 then
printf("\nObjective Function is Continuous Unbounded.\n");
case 3 then
printf("\Limit Exceeded.\n");
case 4 then
printf("\nUser Interrupt.\n");
case 5 then
printf("\nMINLP Error.\n");
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
break;
end
endfunction
function [y, check] = checkIsreal(x)
if ((~isreal(x))) then
y = 0
check=1;
else
y = x;
check=0;
end
endfunction