// Copyright (C) 2015 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author: R.Vidyadhar & Vignesh Kannan // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function [xopt,fopt,exitflag,output,gradient,hessian] = fminunc (varargin) // Solves a multi-variable unconstrainted optimization problem // // Calling Sequence // xopt = fminunc(f,x0) // xopt = fminunc(f,x0,options) // [xopt,fopt] = fminunc(.....) // [xopt,fopt,exitflag]= fminunc(.....) // [xopt,fopt,exitflag,output]= fminunc(.....) // [xopt,fopt,exitflag,output,gradient]=fminunc(.....) // [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(.....) // // Parameters // f : a function, representing the objective function of the problem // x0 : a vector of doubles, containing the starting of variables. // options: a list, containing the option for user to specify. See below for details. // xopt : a vector of doubles, the computed solution of the optimization problem. // fopt : a scalar of double, the function value at x. // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details. // output : a structure, containing the information about the optimization. See below for details. // gradient : a vector of doubles, containing the the gradient of the solution. // hessian : a matrix of doubles, containing the the hessian of the solution. // // Description // Search the minimum of an unconstrained optimization problem specified by : // Find the minimum of f(x) such that // // // \begin{eqnarray} // &\mbox{min}_{x} // & f(x)\\ // \end{eqnarray} // // // The routine calls Ipopt for solving the Un-constrained Optimization problem, Ipopt is a library written in C++. // // The options allows the user to set various parameters of the Optimization problem. // It should be defined as type "list" and contains the following fields. // // Syntax : options= list("MaxIter", [---], "CpuTime", [---], "Gradient", ---, "Hessian", ---); // MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take. // CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take. // Gradient : a function, representing the gradient function of the Objective in Vector Form. // Hessian : a function, representing the hessian function of the Objective in Symmetric Matrix Form. // Default Values : options = list("MaxIter", [3000], "CpuTime", [600]); // // // The exitflag allows to know the status of the optimization which is given back by Ipopt. // // exitflag=0 : Optimal Solution Found // exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal. // exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal. // exitflag=3 : Stop at Tiny Step. // exitflag=4 : Solved To Acceptable Level. // exitflag=5 : Converged to a point of local infeasibility. // // // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/ // // The output data structure contains detailed informations about the optimization process. // It has type "struct" and contains the following fields. // // output.Iterations: The number of iterations performed during the search // output.Cpu_Time: The total cpu-time spend during the search // output.Objective_Evaluation: The number of Objective Evaluations performed during the search // output.Dual_Infeasibility: The Dual Infeasiblity of the final soution // output.Message: The output message for the problem // // // Examples // //Find x in R^2 such that it minimizes the Rosenbrock function // //f = 100*(x2 - x1^2)^2 + (1-x1)^2 // //Objective function to be minimised // function y= f(x) // y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2; // endfunction // //Starting point // x0=[-1,2]; // //Gradient of objective function // function y= fGrad(x) // y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)]; // endfunction // //Hessian of Objective Function // function y= fHess(x) // y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ]; // endfunction // //Options // options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess); // //Calling Ipopt // [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options) // // Press ENTER to continue // // Examples // //Find x in R^2 such that the below function is minimum // //f = x1^2 + x2^2 // //Objective function to be minimised // function y= f(x) // y= x(1)^2 + x(2)^2; // endfunction // //Starting point // x0=[2,1]; // //Calling Ipopt // [xopt,fopt]=fminunc(f,x0) // // Press ENTER to continue // // Examples // //The below problem is an unbounded problem: // //Find x in R^2 such that the below function is minimum // //f = - x1^2 - x2^2 // //Objective function to be minimised // function y= f(x) // y= -x(1)^2 - x(2)^2; // endfunction // //Starting point // x0=[2,1]; // //Gradient of objective function // function y= fGrad(x) // y= [-2*x(1),-2*x(2)]; // endfunction // //Hessian of Objective Function // function y= fHess(x) // y= [-2,0;0,-2]; // endfunction // //Options // options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess); // //Calling Ipopt // [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options) // Authors // R.Vidyadhar , Vignesh Kannan //To check the number of input and output arguments [lhs , rhs] = argn(); //To check the number of arguments given by the user if ( rhs<2 | rhs>3 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2 or 5"), "fminunc", rhs); error(errmsg) end //Storing the 1st and 2nd Input Parameters fun = varargin(1); x0 = varargin(2); //To check whether the 1st Input argument(fun) is a function or not if (type(fun) ~= 13 & type(fun) ~= 11) then errmsg = msprintf(gettext("%s: Expected function for Objective "), "fminunc"); error(errmsg); end //To check whether the 2nd Input argument(x0) is a vector/scalar if (type(x0) ~= 1) then errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Starting Point"), "fminunc"); error(errmsg); end //To check and convert the 2nd Input argument(x0) to a row vector if((size(x0,1)~=1) & (size(x0,2)~=1)) then errmsg = msprintf(gettext("%s: Expected Row Vector or Column Vector for x0 (Initial Value) "), "fminunc"); error(errmsg); else if(size(x0,2)==1) then x0=x0'; //Converting x0 to a row vector, if it is a column vector else x0=x0; //Retaining the same, if it is already a row vector end s=size(x0); end //To check the match between f (1st Parameter) and x0 (2nd Parameter) if(execstr('init=fun(x0)','errcatch')==21) then errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fminunc"); error(errmsg); end //Converting the User defined Objective function into Required form (Error Detectable) function [y,check] = f(x) if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27) y=0; check=1; else y=fun(x); if (isreal(y)==%F) then y=0; check=1; else check=0; end end endfunction //To check whether options has been entered by user if ( rhs<3 ) then param = list(); else param =varargin(3); //Storing the 3rd Input Parameter in an intermediate list named 'param' end //If options has been entered, then check its type for 'list' if (type(param) ~= 15) then errmsg = msprintf(gettext("%s: 3rd Input parameter should be a list (ie. Options) "), "fminunc"); error(errmsg); end //If options has been entered, then check whether an even number of entires has been entered if (modulo(size(param),2)) then errmsg = msprintf(gettext("%s: Size of parameters should be even"), "fminunc"); error(errmsg); end //Defining a function to calculate Gradient or Hessian if the respective user entry is OFF function [y,check]=gradhess(x,t) if t==1 then //To return Gradient if(execstr('y=numderivative(fun,x)','errcatch')==10000) y=0; check=1; else y=numderivative(fun,x); if (isreal(y)==%F) then y=0; check=1; else check=0; end end else //To return Hessian if(execstr('[grad,y]=numderivative(fun,x)','errcatch')==10000) y=0; check=1; else [grad,y]=numderivative(fun,x); if (isreal(y)==%F) then y=0; check=1; else check=0; end end end endfunction //To set default values for options, if user doesn't enter options options = list("MaxIter", [3000], "CpuTime", [600]); //Flags to check whether Gradient is "ON"/"OFF" and Hessian is "ON"/"OFF" flag1=0; flag2=0; fGrad=[]; fGrad1=[]; fHess=[]; fHess1=[]; //To check the user entry for options and store it for i = 1:(size(param))/2 select convstr(param(2*i-1),'l') case "maxiter" then if (type(param(2*i))~=1) then errmsg = msprintf(gettext("%s: Value for Maximum Iteration should be a Constant"), "fminunc"); error(errmsg); else options(2*i) = param(2*i); //Setting the maximum number of iterations as per user entry end case "cputime" then if (type(param(2*i))~=1) then errmsg = msprintf(gettext("%s: Value for Maximum Cpu-time should be a Constant"), "fminunc"); error(errmsg); else options(2*i) = param(2*i); //Setting the maximum CPU time as per user entry end case "gradient" then if (type(param(2*i))==10) then if (convstr(param(2*i))=="off") then flag1 =0; else errmsg = msprintf(gettext("%s: Unrecognized String [%s] entered for the option- %s."), "fminunc",param(2*i), param(2*i-1)); error(errmsg); end else flag1 = 1; fGrad = param(2*i); end case "hessian" then if (type(param(2*i))==10) then if (convstr(param(2*i))=="off") then flag2 =0; else errmsg = msprintf(gettext("%s: Unrecognized String [%s] entered for the option- %s."), "fminunc",param(2*i), param(2*i-1)); error(errmsg); end else flag2 = 1; fHess = param(2*i); end else errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fminunc", param(2*i-1)); error(errmsg) end end //To check for correct input of Gradient and Hessian functions from the user if (flag1==1) then if (type(fGrad) ~= 13 & type(fGrad) ~= 11) then errmsg = msprintf(gettext("%s: Expected function for Gradient of Objective"), "fminunc"); error(errmsg); end if(execstr('samplefGrad=fGrad(x0)','errcatch')==21) errmsg = msprintf(gettext("%s: Gradient function of Objective and x0 did not match"), "fminunc"); error(errmsg); end samplefGrad=fGrad(x0); if (size(samplefGrad,1)==s(2) & size(samplefGrad,2)==1) then elseif (size(samplefGrad,1)==1 & size(samplefGrad,2)==s(2)) then else errmsg = msprintf(gettext("%s: Wrong Input for Objective Gradient function(3rd Parameter)---->Row Vector function of size [1 X %d] is Expected"), "fminunc",s(2)); error(errmsg); end function [y,check] = fGrad1(x) if(execstr('y=fGrad(x)','errcatch')==32 | execstr('y=fGrad(x)','errcatch')==27) y = 0; check=1; else y=fGrad(x); if (isreal(y)==%F) then y = 0; check=1; else check=0; end end endfunction end if (flag2==1) then if (type(fHess) ~= 13 & type(fHess) ~= 11) then errmsg = msprintf(gettext("%s: Expected function for Hessian of Objective"), "fminunc"); error(errmsg); end if(execstr('samplefHess=fHess(x0)','errcatch')==21) errmsg = msprintf(gettext("%s: Hessian function of Objective and x0 did not match"), "fminunc"); error(errmsg); end samplefHess=fHess(x0); if(size(samplefHess,1)~=s(2) | size(samplefHess,2)~=s(2)) then errmsg = msprintf(gettext("%s: Wrong Input for Objective Hessian function(3rd Parameter)---->Symmetric Matrix function of size [%d X %d] is Expected "), "fminunc",s(2),s(2)); error(errmsg); end function [y,check] = fHess1(x) if(execstr('y=fHess(x)','errcatch')==32 | execstr('y=fHess(x)','errcatch')==27) y = 0; check=1; else y=fHess(x); if (isreal(y)==%F) then y = 0; check=1; else check=0; end end endfunction end //Calling the Ipopt function for solving the above problem [xopt,fopt,status,iter,cpu,obj_eval,dual,gradient, hessian1] = solveminuncp(f,gradhess,flag1,fGrad1,flag2,fHess1,x0,options); //Calculating the values for output xopt = xopt'; exitflag = status; output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[],"Message",""); output.Iterations = iter; output.Cpu_Time = cpu; output.Objective_Evaluation = obj_eval; output.Dual_Infeasibility = dual; //Converting hessian of order (1 x (numberOfVariables)^2) received from Ipopt to order (numberOfVariables x numberOfVariables) s=size(gradient) for i =1:s(2) for j =1:s(2) hessian(i,j)= hessian1(j+((i-1)*s(2))) end end //In the cases of the problem not being solved, return NULL to the output matrices if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then xopt=[] fopt=[] output = struct("Iterations", [],"Cpu_Time",[],"Message",""); output.Iterations = iter; output.Cpu_Time = cpu; gradient=[] hessian=[] end //To print output message select status case 0 then printf("\nOptimal Solution Found.\n"); output.Message="Optimal Solution Found"; case 1 then printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n"); output.Message="Maximum Number of Iterations Exceeded. Output may not be optimal"; case 2 then printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n"); output.Message="Maximum CPU Time exceeded. Output may not be optimal"; case 3 then printf("\nStop at Tiny Step\n"); output.Message="Stop at Tiny Step"; case 4 then printf("\nSolved To Acceptable Level\n"); output.Message="Solved To Acceptable Level"; case 5 then printf("\nConverged to a point of local infeasibility.\n"); output.Message="Converged to a point of local infeasibility"; case 6 then printf("\nStopping optimization at current point as requested by user.\n"); output.Message="Stopping optimization at current point as requested by user"; case 7 then printf("\nFeasible point for square problem found.\n"); output.Message="Feasible point for square problem found"; case 8 then printf("\nIterates diverging; problem might be unbounded.\n"); output.Message="Iterates diverging; problem might be unbounded"; case 9 then printf("\nRestoration Failed!\n"); output.Message="Restoration Failed!"; case 10 then printf("\nError in step computation (regularization becomes too large?)!\n"); output.Message="Error in step computation (regularization becomes too large?)!"; case 11 then printf("\nProblem has too few degrees of freedom.\n"); output.Message="Problem has too few degrees of freedom"; case 12 then printf("\nInvalid option thrown back by Ipopt\n"); output.Message="Invalid option thrown back by Ipopt"; case 13 then printf("\nNot enough memory.\n"); output.Message="Not enough memory"; case 15 then printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n"); output.Message="INTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors"; else printf("\nInvalid status returned. Notify the Toolbox authors\n"); output.Message="Invalid status returned. Notify the Toolbox authors"; break; end endfunction