// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Authors: Prajwala TM,Sheetal Shalini
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(varargin)
// Solves a multiobjective goal attainment problem
//
// Calling Sequence
// xopt = fgoalattain(fun,x0,goal,weight)
// xopt = fgoalattain(fun,x0,goal,weight,A,b)
// xopt = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
// xopt = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
// xopt = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
// xopt = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)
// [xopt,fval] = fgoalattain(...)
// [xopt,fval,attainfactor] = fgoalattain(...)
// [xopt,fval,attainfactor,exitflag] = fgoalattain(...)
// [xopt,fval,attainfactor,exitflag,output] = fgoalattain(...)
// [xopt,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)
//
// Parameters
// fun: a function that accepts a vector x and returns a vector F
// x0 : a vector of double, contains initial guess of variables.
// A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
// nonlcon: a function, the nonlinear constraints
// options : a list, containing the option for user to specify. See below for details.
// xopt : a vector of double, the computed solution of the optimization problem.
// fopt : a double, the value of the function at x.
// attainfactor: The amount of over- or underachievement of the goals,γ at the solution.
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// fgoalattain solves the goal attainment problem, which is one formulation for minimizing a multiobjective optimization problem.
// Finds the minimum of a problem specified by:
// Minimise Y such that
//
//
//\begin{eqnarray}
//\mbox{min}_{x,\gamma} & f(x)-weight \ast \gamma \leq goal \\
//\mbox{subject to} & c(x) \leq 0 \\
// & c_{eq}(x) = 0 \\
// & Ax \leq b \\
// & A_{eq} x = b_{eq} \\
// & lb \leq x \leq ub
//\end{eqnarray}
//
//
// The solver makes use of fmincon to find the minimum.
//
// The fgoalattain finds out the maximum value of Y for the objectives evaluated at the starting point and
// adds that as another variable to the vector x
// This is passed to the fmincon function to get the optimised value of Y
// Hence, the algorithm used mainly is "ipopt" to obtain the optimum solution
// The relations between f(x), Y, weights and goals are added as additional non-linear inequality constraints
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
//
// Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "GradCon", ---);
// MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
// CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
// GradObj : a function, representing the gradient function of the Objective in Vector Form.
// GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 & m3 are number of non-linear inequality and equality constraints respectively.
// Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);
//
//
// By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of gattainObjfun. In case the GradObj option is off and GradConstr option is on, fminimax approximates gattainObjfun gradient using numderivative toolbox.
//
// If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
//
// Furthermore, we must enable the "GradObj" option with the statement :
//
// minimaxOptions = list("GradObj",fGrad);
//
// This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function. Note that, fGrad should be mentioned in the form of N x n where n is the number of variables, N is the number of functions in objective function.
//
// The constraint function must have header :
//
// [c, ceq] = confun(x)
//
// where x is a n x 1 matrix of doubles, c is a 1 x nni matrix of doubles and ceq is a 1 x nne matrix of doubles (nni : number of nonlinear inequality constraints, nne : number of nonlinear equality constraints).
// On input, the variable x contains the current point and, on output, the variable c must contain the nonlinear inequality constraints and ceq must contain the nonlinear equality constraints.
//
// By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of confun. In case the GradObj option is on and GradCons option is off, fminimax approximates confun gradient using numderivative toolbox.
//
// If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
//
// Furthermore, we must enable the "GradCon" option with the statement :
//
// minimaxOptions = list("GradCon",confunGrad);
//
// This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function.
//
// The constraint derivative function must have header :
//
// [dc,dceq] = confungrad(x)
//
// where dc is a nni x n matrix of doubles and dceq is a nne x n matrix of doubles.
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
//
// exitflag=0 : Optimal Solution Found
// exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.
// exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.
// exitflag=3 : Stop at Tiny Step.
// exitflag=4 : Solved To Acceptable Level.
// exitflag=5 : Converged to a point of local infeasibility.
//
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
//
// output.Iterations: The number of iterations performed during the search
// output.Cpu_Time: The total cpu-time spend during the search
// output.Objective_Evaluation: The number of Objective Evaluations performed during the search
// output.Dual_Infeasibility: The Dual Infeasiblity of the final soution
//
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
//
// lambda.lower: The Lagrange multipliers for the lower bound constraints.
// lambda.upper: The Lagrange multipliers for the upper bound constraints.
// lambda.eqlin: The Lagrange multipliers for the linear equality constraints.
// lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.
// lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.
// lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.
//
//
// Examples
// function f1 = gattainObjfun(x)
// f1(1)=2*x(1)*x(1)+x(2)*x(2)-48*x(1)-40*x(2)+304
// f1(2)=-x(1)*x(1)-3*x(2)*x(2)
// f1(3)=x(1)+3*x(2)-18
// f1(4)=-x(1)-x(2)
// f1(5)=x(1)+x(2)-8
// endfunction
// x0=[-1,1];
// goal=[-5,-3,-2,-1,-4];
// weight=abs(goal)
// //gval =[- 0.0000011 -63.999998 -2.0000002 -8 3.485D-08]
// //z = [4 3.99]
// //Run fgoalattain
// [x,fval,attainfactor,exitflag,output,lambda]=fgoalattain(gattainObjfun,x0,goal,weight)
// Authors
// Prajwala TM, Sheetal Shalini , 2015
// Check number of input and output arguments
[gattainLhs,gattainRhs] = argn()
Checkrhs("fgoalattain", gattainRhs, [4 6 8 10 11 12])
Checklhs("fgoalattain", gattainLhs, 1:6)
// initialisation of fun
gattainObjfun = varargin(1)
Checktype("fgoalattain", gattainObjfun, "fun", 1, "function")
// initialisation of x0
gattainStartpoint = varargin(2)
Checktype("fgoalattain", gattainStartpoint, "x0", 2, "constant")
gattainNumvar = size(gattainStartpoint,"*")
gattainStartpoint = gattainStartpoint(:)
// initialisation of goal
goal=varargin(3)
Checktype("fgoalattain",goal,"goal",3,"constant")
// initialisation of weight
weight=varargin(4)
Checktype("fgoalattain",weight,"weight",4,"constant")
//initialisation of A and b
if(gattainRhs < 5) then
gattainA = []
gattainB = []
else
gattainA = varargin(5)
gattainB = varargin(6)
end
Checktype("fgoalattain", gattainA, "A", 5, "constant")
Checktype("fgoalattain", gattainB, "b", 6, "constant")
gattainNumrowA = size(gattainA,"r")
if(gattainA <> []) then
Checkdims("fgoalattain", gattainA, "A", 5, [gattainNumrowA gattainNumvar])
Checkvector("fgoalattain", gattainB, "b", 6, gattainNumrowA)
gattainB = gattainB(:)
end
//initialisation of Aeq and beq
if(gattainRhs < 7) then
gattainAeq = []
gattainBeq = []
else
gattainAeq = varargin(7)
gattainBeq = varargin(8)
end
Checktype("fgoalattain", gattainAeq, "Aeq", 7, "constant")
Checktype("fgoalattain", gattainBeq, "beq", 8, "constant")
gattainNumrowAeq = size(gattainAeq,"r")
if(gattainAeq <> []) then
Checkdims("fgoalattain", gattainAeq, "Aeq", 7, [gattainNumrowAeq gattainNumvar])
Checkvector("fgoalattain", gattainBeq, "beq", 8, gattainNumrowAeq)
gattainBeq = gattainBeq(:)
end
// initialisation of lb and ub
if(gattainRhs < 9) then
gattainLb = []
gattainUb = []
else
gattainLb = varargin(9)
gattainUb = varargin(10)
end
Checktype("fgoalattain", gattainLb, "lb", 9, "constant")
Checktype("fgoalattain", gattainUb, "ub", 10, "constant")
// Check dimensions of lb and ub
if(gattainLb <> []) then
Checkvector("fgoalattain", gattainLb, "lb", 9, gattainNumvar)
gattainLb = gattainLb(:)
end
if(gattainUb <> []) then
Checkvector("fgoalattain", gattainUb, "ub", 10, gattainNumvar)
gattainUb = gattainUb(:)
end
// Initialisation of nonlcon
function [c,ceq] = constr(z)
c = []
ceq = []
endfunction
if(gattainRhs < 11) then
gattainNonlinfun = constr
else
gattainNonlinfun = varargin(11)
end
Checktype("fgoalattain", gattainNonlinfun, "nonlcon", 11, "function")
// initialisation of default options
if(gattainRhs < 12) then
gattainUserOptions = list()
else
gattainUserOptions = varargin(12)
end
//If gattainOptions is entered then checking its type for 'list'
if (type(gattainUserOptions) ~= 15) then
errmsg = msprintf(gettext("%s: gattainOptions (10th parameter) should be a list"), "fgoalattain");
error(errmsg);
end
//If minimaxOptions is entered then checking whether even number of entires are entered
if (modulo(size(gattainUserOptions),2)) then
errmsg = msprintf(gettext("%s: Size of gattainOptions (list) should be even"), "fgoalattain");
error(errmsg);
end
//Flags to check whether Gradient is "ON"/"OFF" & Hessian is "ON"/"OFF"
flag1=0;
flag2=0;
fgaMaxIter = 3000;
fgaCPU = 600;
gattainFGrad=[];
gattainCGrad=[];
//To check the User Entry for Options and storing it
for i = 1:(size(gattainUserOptions))/2
select convstr(gattainUserOptions(2*i-1),'l')
case "maxiter" then
fgaMaxIter = gattainUserOptions(2*i); //Setting the Maximum Iteration as per user entry
case "cputime" then
fgaCPU = gattainUserOptions(2*i); //Setting the Maximum CPU Time as per user entry
case "gradobj" then
if (type(gattainUserOptions(2*i))==10) then
if (convstr(gattainUserOptions(2*i))=="off") then
flag1 = 0;
else
errmsg = msprintf(gettext("%s: Unrecognized String %s entered for the option- %s."), "fgoalattain",gattainUserOptions(2*i), gattainUserOptions(2*i-1));
error(errmsg);
end
else
flag1 = 1;
gattainFGrad = gattainUserOptions(2*i);
end
case "gradcon" then
if (type(gattainUserOptions(2*i))==10) then
if (convstr(gattainUserOptions(2*i))=="off") then
flag2 = 0;
else
errmsg = msprintf(gettext("%s: Unrecognized String %s entered for the option- %s."), "fgoalattain",gattainUserOptions(2*i), gattainUserOptions(2*i-1));
error(errmsg);
end
else
flag2 = 1;
gattainCGrad = gattainUserOptions(2*i);
end
else
errmsg = msprintf(gettext("%s: Unrecognized gattainUserOptionseter name ''%s''."), "fminimax", gattainUserOptions(2*i-1));
error(errmsg)
end
end
// Checking if gattainFGrad and gattainCGrad are functions
if (flag1==1) then
if (type(gattainFGrad) ~= 11 & type(gattainFGrad) ~= 13) then
errmsg = msprintf(gettext("%s: Expected function for Gradient of Objective"), "fminimax");
error(errmsg);
end
end
if (flag2==1) then
if (type(gattainCGrad) ~= 11 & type(gattainCGrad) ~= 13) then
errmsg = msprintf(gettext("%s: Expected function for Gradient of Nonlinfun"), "fminimax");
error(errmsg);
end
end
gattainObjfunval = gattainObjfun(gattainStartpoint)
gattainObjfunval=gattainObjfunval(:)
goal=goal(:)
weight=weight(:)
gaVal=[]
// appending the gamma value as another variable
for i=1:size(gattainObjfunval,'r')
if(weight(i)<>0) then
gaVal(i)=((gattainObjfunval(i)-goal(i))/weight(i))
end
end
gattainStartpoint(gattainNumvar+1)=max(gaVal)
if(gattainA <> []) then
gattainA = [gattainA, zeros(gattainNumrowA,1)]
end
if(gattainAeq <> []) then
gattainAeq = [gattainAeq, zeros(gattainNumrowAeq,1)]
end
if(gattainLb <> []) then
gattainLb(gattainNumvar+1) = -%inf
end
if(gattainUb <> []) then
gattainUb(gattainNumvar+1) = +%inf
end
// function handle defining the additional inequalities
function temp = gattainAddIneq(z)
gaVar = gattainObjfun(z)
gattainAddIneqWithWt = []
gattainAddIneqWitoutWt = []
for i = 1:size(gaVar,'r')
if(weight(i) <> 0) then
gattainAddIneqWithWt = [gattainAddIneqWithWt; ( (gaVar(i)-goal(i))/weight(i) )]
else
gattainAddIneqWitoutWt = [gattainAddIneqWitoutWt; gaVar(i)-goal(i)]
end
end
temp = [gattainAddIneqWithWt - z(gattainNumvar+1); gattainAddIneqWitoutWt]
endfunction
// function handle defining new objective function
function newfunc = newObjfun(z)
newfunc = z(gattainNumvar+1)
endfunction
// function handle defining add_ineq derivative using numderivative
function func = gattainIneqDer(z)
func = numderivative(gattainAddIneq,z)
endfunction
// function handle defining nonlcon derivative using numderivative
function [dc,dceq] = gattainNonlinDer(z)
// function handle extracting c and ceq components from nonlcon
function foo = gattainC(z)
[foo,tmp1] = gattainNonlinfun(z)
foo = foo'
endfunction
function foo = gattainCEQ(z)
[tmp1,foo] = gattainNonlinfun(z)
foo = foo'
endfunction
dc = numderivative(gattainC,z)
dceq = numderivative(gattainCEQ,z)
endfunction
// function handle defining new nonlcon function
function [nc,nceq] = newNonlinfun(z)
[nc,nceq] = gattainNonlinfun(z)
tmp = [gattainAddIneq(z)]'
nc = [nc, tmp]
endfunction
function [dnc,dnceq] = newCGrad(z)
// check if "GradCon" option is turned on
// if "GradCon" is turned on, use it
if(flag2 == 1) then
[dnc,dnceq] = gattainCGrad(z)
dnc = [dnc, zeros(size(dnc,'r'),1)]
dnceq = [dnceq, zeros(size(dnceq,'r'),1)]
// else, calculate it using finite differences
else
[dnc,dnceq] = gattainNonlinDer(z)
end
// check if "GradObj" option is turned on
// if "GradObj" is turned on, use it
if(flag1 == 1) then
derObjfun = gattainFGrad(z)
tmp1 = []
tmp2 = []
for i = 1:size(gattainObjfun(gattainStartpoint),'r')
if weight(i) <> 0 then
gaVal = [derObjfun(i,:)/weight(i) , -1]
tmp1 = [ tmp1; gaVal ]
else
gaVal = [derObjfun(i,:) , 0]
tmp2 = [ tmp2; gaVal ]
end
end
dnc = [ dnc; tmp1; tmp2 ]
// else, calculate it using finite differences
else
deraddineq = gattainIneqDer(z)
dnc = [dnc; deraddineq]
end
endfunction
//to be passed as options to fmincon
if (flag1 == 1 | flag2 == 1) then
gattainPassOptions = list("MaxIter", fgaMaxIter, "CpuTime", fgaCPU, "GradCon", newCGrad)
[x,attainfactor,exitflag,output,lambda] = fmincon(newObjfun,gattainStartpoint,gattainA,gattainB,gattainAeq,gattainBeq,gattainLb,gattainUb,newNonlinfun,gattainPassOptions)
x= x(1:gattainNumvar)
fval = gattainObjfun(x)
else
gattainPassOptions = list("MaxIter", fgaMaxIter, "CpuTime", fgaCPU)
[x,attainfactor,exitflag,output,lambda] = fmincon(newObjfun,gattainStartpoint,gattainA,gattainB,gattainAeq,gattainBeq,gattainLb,gattainUb,newNonlinfun,gattainPassOptions)
x= x(1:gattainNumvar)
fval = gattainObjfun(x)
end
endfunction