Solves minimax constraint problem
xopt = intfminimax(fun,x0,intcon) xopt = intfminimax(fun,x0,intcon,A,b) xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq) xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub) xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub,nonlinfun) xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub,nonlinfun,options) [xopt, fval] = intfminimax(.....) [xopt, fval, maxfval]= intfminimax(.....) [xopt, fval, maxfval, exitflag]= intfminimax(.....)
The function to be minimized. fun is a function that has a vector x as an input argument, and contains the objective functions evaluated at x.
A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables.
A matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints.
A vector of doubles, related to 'A' and represents the linear coefficients in the linear inequality constraints of size (m X 1).
A matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints.
A vector of double, vector of doubles, related to 'Aeq' and represents the linear coefficients in the equality constraints of size (m1 X 1).
A vector of integers, representing the variables that are constrained to be integers.
A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.
A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.
A function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints (c), and the non-linear equality constraints (ceq) are defined as separate single row vectors.
A list, containing the option for user to specify. See below for details.
A vector of doubles, containing the computed solution of the optimization problem.
A vector of doubles, containing the values of the objective functions at the end of the optimization problem.
A double, representing the maximum value in the vector fval.
An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
A structure, containing the information about the optimization. See below for details.
A structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.
intfminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
max-min problems can also be solved with intfminimax, using the identity
Currently, intfminimax calls intfmincon, which uses the bonmin algorithm, an optimization library in C++.
The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
The objective function must have header :
where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F. On input, the variable x contains the current point and, on output, the variable F must contain the objective function values.By default, the gradient options for intfminimax are turned off and and fmincon does the gradient opproximation of minmaxObjfun. In case the GradObj option is off and GradCon option is on, intfminimax approximates minmaxObjfun gradient using the numderivative toolbox.
If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
The exitflag allows to know the status of the optimization which is given back by Bonmin.
For more details on exitflag, see the Bonmin documentation which can be found on http://www.coin-or.org/Bonmin
A few examples displaying the various functionalities of intfminimax have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
We can further enhance the functionality of fminimax by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 6. We take the following problem, specify the gradients, and the jacobian matrix of the constraints. We also set solver parameters using the options.
//Example 6: Using the available options function f=myfun(x) f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304; f(2)= -x(1)^2 - 3*x(2)^2; f(3)= x(1) + 3*x(2) -18; f(4)= -x(1) - x(2); f(5)= x(1) + x(2) - 8; endfunction // Defining gradient of myfun function G=myfungrad(x) G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1; 2*x(2) - 40, -6*x(2), 3, -1, 1; ]' endfunction // The nonlinear constraints and the Jacobian // matrix of the constraints function [c, ceq]=confun(x) // Inequality constraints c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10] // No nonlinear equality constraints ceq=[] endfunction // Defining gradient of confungrad function [DC, DCeq]=cgrad(x) // DC(:,i) = gradient of the i-th constraint // DC = [ // Dc1/Dx1 Dc1/Dx2 // Dc2/Dx1 Dc2/Dx2 // ] DC= [ x(2)-1, -x(2) x(1)-1, -x(1) ]' DCeq = []' endfunction // Test with both gradient of objective and gradient of constraints Options = list("MaxIter", [3000], "CpuTime", [600],"GradObj",myfungrad,"GradCon",cgrad); // The initial guess x0 = [0,10]; // The expected solution : only 4 digits are guaranteed xopt = [0.92791 7.93551] fopt = [6.73443 -189.778 6.73443 -8.86342 0.86342] maxfopt = 6.73443 //integer constraints intcon = [1]; // Run intfminimax [x,fval,maxfval,exitflag,output] = intfminimax(myfun,intcon,x0,[],[],[],[],[],[], confun, Options) |