<< fgoalattain Symphony Toolbox fmincon >>

Symphony Toolbox >> Symphony Toolbox > fminbnd

fminbnd

Solves a multi-variable optimization problem on a bounded interval

Calling Sequence

xopt = fminbnd(f,x1,x2)
xopt = fminbnd(f,x1,x2,options)
[xopt,fopt] = fminbnd(.....)
[xopt,fopt,exitflag]= fminbnd(.....)
[xopt,fopt,exitflag,output]=fminbnd(.....)
[xopt,fopt,exitflag,output,lambda]=fminbnd(.....)

Parameters

f :

a function, representing the objective function of the problem

x1 :

a vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables, where n is number of Variables

x2 :

a vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where 'n' is the number of Variables. If x2 is empty it means upper bound is +infinity

options :

a list, containing the option for user to specify. See below for details.

xopt :

a vector of doubles, containing the the computed solution of the optimization problem.

fopt :

a scalar of double, containing the the function value at x.

exitflag :

a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.

output :

a structure, containing the information about the optimization. See below for details.

lambda :

a structure, containing the Lagrange multipliers of lower bound and upper bound at the optimized point. See below for details.

Description

Search the minimum of a multi-variable function on bounded interval specified by : Find the minimum of f(x) such that

The routine calls Ipopt for solving the Bounded Optimization problem, Ipopt is a library written in C++.

The options allows the user to set various parameters of the Optimization problem. It should be defined as type "list" and contains the following fields.

The exitflag allows to know the status of the optimization which is given back by Ipopt.

For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/

The output data structure contains detailed informations about the optimization process. It has type "struct" and contains the following fields.

The lambda data structure contains the Lagrange multipliers at the end of optimization. In the current version the values are returned only when the the solution is optimal. It has type "struct" and contains the following fields.

Examples

//Find x in R^6 such that it minimizes:
//f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
//-2 <= x1,x2,x3,x4,x5,x6 <= 2
//Objective function to be minimised
function y=f(x)
y=0
for i =1:6
y=y+sin(x(i));
end
endfunction
//Variable bounds
x1 = [-2, -2, -2, -2, -2, -2];
x2 = [2, 2, 2, 2, 2, 2];
//Options
options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
//Calling Ipopt
[x,fval] =fminbnd(f, x1, x2, options)

Examples

//Find x in R such that it minimizes:
//f(x)= 1/x^2
//0 <= x <= 1000
//Objective function to be minimised
function y=f(x)
y=1/x^2
endfunction
//Variable bounds
x1 = [0];
x2 = [1000];
//Calling Ipopt
[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2)

Examples

//The below problem is an unbounded problem:
//Find x in R^2 such that it minimizes:
//f(x)= -[(x1-1)^2 + (x2-1)^2]
//-inf <= x1,x2 <= inf
//Objective function to be minimised
function y=f(x)
y=-((x(1)-1)^2+(x(2)-1)^2);
endfunction
//Variable bounds
x1 = [-%inf , -%inf];
x2 = [];
//Options
options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
//Calling Ipopt
[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2, options)

Authors


Report an issue
<< fgoalattain Symphony Toolbox fmincon >>