mode(1) // // Demo of intfminunc.sci // //Find x in R^2 such that it minimizes the Rosenbrock function //f = 100*(x2 - x1^2)^2 + (1-x1)^2 //Objective function to be minimised function y= f(x) y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2; endfunction //Starting point x0=[-1,2]; intcon = [2] //Options options=list("MaxIter", [1500], "CpuTime", [500]); //Calling [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options) // Press ENTER to continue halt() // Press return to continue //Find x in R^2 such that the below function is minimum //f = x1^2 + x2^2 //Objective function to be minimised function y= f(x) y= x(1)^2 + x(2)^2; endfunction //Starting point x0=[2,1]; intcon = [1]; [xopt,fopt]=intfminunc(f,x0,intcon) // Press ENTER to continue halt() // Press return to continue //The below problem is an unbounded problem: //Find x in R^2 such that the below function is minimum //f = - x1^2 - x2^2 //Objective function to be minimised function [y,g,h] = f(x) y = -x(1)^2 - x(2)^2; g = [-2*x(1),-2*x(2)]; h = [-2,0;0,-2]; endfunction //Starting point x0=[2,1]; intcon = [1] options = list("gradobj","ON","hessian","on"); [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options) //========= E N D === O F === D E M O =========//