mode(1) // // Demo of fmincon.sci // //Find x in R^2 such that it minimizes: //f(x)= -x1 -x2/3 //x0=[0,0] //constraint-1 (c1): x1 + x2 <= 2 //constraint-2 (c2): x1 + x2/4 <= 1 //constraint-3 (c3): x1 - x2 <= 2 //constraint-4 (c4): -x1/4 - x2 <= 1 //constraint-5 (c5): -x1 - x2 <= -1 //constraint-6 (c6): -x1 + x2 <= 2 //constraint-7 (c7): x1 + x2 = 2 //Objective function to be minimised function y=f(x) y=-x(1)-x(2)/3; endfunction //Starting point, linear constraints and variable bounds x0=[0 , 0]; A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; b=[2;1;2;1;-1;2]; Aeq=[1,1]; beq=[2]; lb=[]; ub=[]; nlc=[]; //Gradient of objective function function y= fGrad(x) y= [-1,-1/3]; endfunction //Hessian of lagrangian function y= lHess(x,obj,lambda) y= obj*[0,0;0,0] endfunction //Options options=list("GradObj", fGrad, "Hessian", lHess); //Calling Ipopt [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) // Press ENTER to continue halt() // Press return to continue //Find x in R^3 such that it minimizes: //f(x)= x1*x2 + x2*x3 //x0=[0.1 , 0.1 , 0.1] //constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2 //constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10 //Objective function to be minimised function y=f(x) y=x(1)*x(2)+x(2)*x(3); endfunction //Starting point, linear constraints and variable bounds x0=[0.1 , 0.1 , 0.1]; A=[]; b=[]; Aeq=[]; beq=[]; lb=[]; ub=[]; //Nonlinear constraints function [c,ceq]=nlc(x) c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10]; ceq = []; endfunction //Gradient of objective function function y= fGrad(x) y= [x(2),x(1)+x(3),x(2)]; endfunction //Hessian of the Lagrange Function function y= lHess(x,obj,lambda) y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2] endfunction //Gradient of Non-Linear Constraints function [cg,ceqg] = cGrad(x) cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)]; ceqg=[]; endfunction //Options options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad); //Calling Ipopt [x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) // Press ENTER to continue halt() // Press return to continue //The below problem is an unbounded problem: //Find x in R^3 such that it minimizes: //f(x)= -(x1^2 + x2^2 + x3^2) //x0=[0.1 , 0.1 , 0.1] // x1 <= 0 // x2 <= 0 // x3 <= 0 //Objective function to be minimised function y=f(x) y=-(x(1)^2+x(2)^2+x(3)^2); endfunction //Starting point, linear constraints and variable bounds x0=[0.1 , 0.1 , 0.1]; A=[]; b=[]; Aeq=[]; beq=[]; lb=[]; ub=[0,0,0]; //Options options=list("MaxIter", [1500], "CpuTime", [500]); //Calling Ipopt [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options) // Press ENTER to continue halt() // Press return to continue //The below problem is an infeasible problem: //Find x in R^3 such that in minimizes: //f(x)=x1*x2 + x2*x3 //x0=[1,1,1] //constraint-1 (c1): x1^2 <= 1 //constraint-2 (c2): x1^2 + x2^2 <= 1 //constraint-3 (c3): x3^2 <= 1 //constraint-4 (c4): x1^3 = 0.5 //constraint-5 (c5): x2^2 + x3^2 = 0.75 // 0 <= x1 <=0.6 // 0.2 <= x2 <= inf // -inf <= x3 <= 1 //Objective function to be minimised function y=f(x) y=x(1)*x(2)+x(2)*x(3); endfunction //Starting point, linear constraints and variable bounds x0=[1,1,1]; A=[]; b=[]; Aeq=[]; beq=[]; lb=[0 0.2,-%inf]; ub=[0.6 %inf,1]; //Nonlinear constraints function [c,ceq]=nlc(x) c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1]; ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75]; endfunction //Gradient of objective function function y= fGrad(x) y= [x(2),x(1)+x(3),x(2)]; endfunction //Hessian of the Lagrange Function function y= lHess(x,obj,lambda) y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1 ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2]; endfunction //Gradient of Non-Linear Constraints function [cg,ceqg] = cGrad(x) cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)]; ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)]; endfunction //Options options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad); //Calling Ipopt [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) // Press ENTER to continue //========= E N D === O F === D E M O =========//