mode(1) // // Demo of fminbnd.sci // //Find x in R^6 such that it minimizes: //f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6) //-2 <= x1,x2,x3,x4,x5,x6 <= 2 //Objective function to be minimised function y=f(x) y=0 for i =1:6 y=y+sin(x(i)); end endfunction //Variable bounds x1 = [-2, -2, -2, -2, -2, -2]; x2 = [2, 2, 2, 2, 2, 2]; //Options options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6]) //Calling Ipopt [x,fval] =fminbnd(f, x1, x2, options) halt() // Press return to continue //Find x in R such that it minimizes: //f(x)= 1/x^2 //0 <= x <= 1000 //Objective function to be minimised function y=f(x) y=1/x^2 endfunction //Variable bounds x1 = [0]; x2 = [1000]; //Calling Ipopt [x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2) halt() // Press return to continue //The below problem is an unbounded problem: //Find x in R^2 such that it minimizes: //f(x)= -[(x1-1)^2 + (x2-1)^2] //-inf <= x1,x2 <= inf //Objective function to be minimised function y=f(x) y=-((x(1)-1)^2+(x(2)-1)^2); endfunction //Variable bounds x1 = [-%inf , -%inf]; x2 = []; //Options options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6]) //Calling Ipopt [x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2, options) //========= E N D === O F === D E M O =========//