From 29e8e8bbd43892c7fa146c165fdf128f786d6a7b Mon Sep 17 00:00:00 2001 From: Harpreet Date: Mon, 2 Nov 2015 16:20:08 +0530 Subject: README.rst added --- help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS | Bin 6478 -> 7157 bytes .../scilab_en_US_help/JavaHelpSearch/DOCS.TAB | 8 +- .../en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS | Bin 255 -> 258 bytes .../scilab_en_US_help/JavaHelpSearch/POSITIONS | Bin 31519 -> 35046 bytes help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA | 2 +- help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP | Bin 16384 -> 16384 bytes .../scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png | Bin 0 -> 3110 bytes .../scilab_en_US_help/_LaTeX_symphonymat.xml_1.png | Bin 0 -> 2934 bytes help/en_US/scilab_en_US_help/index.html | 4 +- help/en_US/scilab_en_US_help/jhelpmap.jhm | 4 +- help/en_US/scilab_en_US_help/jhelptoc.xml | 4 +- help/en_US/scilab_en_US_help/qpipopt.html | 20 +- help/en_US/scilab_en_US_help/qpipoptmat.html | 146 +++++++++++++++ .../section_19f4f1e5726c01d683e8b82be0a7e910.html | 4 +- .../section_508f0b211d17ea6769714cc144e6b731.html | 4 +- help/en_US/scilab_en_US_help/symphony.html | 14 +- help/en_US/scilab_en_US_help/symphonymat.html | 201 +++++++++++++++++++++ 17 files changed, 381 insertions(+), 30 deletions(-) create mode 100644 help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png create mode 100644 help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png create mode 100644 help/en_US/scilab_en_US_help/qpipoptmat.html create mode 100644 help/en_US/scilab_en_US_help/symphonymat.html (limited to 'help/en_US/scilab_en_US_help') diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS index 1b55b83..bf90ce2 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB index 3b7b18b..1b174ab 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB @@ -1,6 +1,2 @@ -eџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџy§езџ§зџї_џ§зџuџџџџџџ§Я'\вџџџџџџџџџџџџџџЬ'нізџџџЯ'џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџЧќвџџйџuџЦEIuіSIлз0БСЭ'џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ@ [ -CPЄ6NШ4*=h' -rТq\tX5ч - C04 вbBG в_ - Ь*]*чДХX7 aшHСБ#J(0 Щ ИXtБl4 -8PhтИU}Бh`TtW(hвbEh2QUёWўeЏ dџыЊw_ѓJњПuќТћЙj_иТzяџнf_§ЊБ!#qХC& Р"Ъ(Т(ђЃ!Д|dXЃЁЫ(OЏЫѓ0П0ГМйН(ШП5ГЊF,шГЊВЮF,фЂЮЎГXПѓЮ,Тѓџ:0ПџЬ/џџ4П0МЮИГ+,Тџџ2ЊЎЊЊџ2ЊЊЊЊй:ЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊЊшГ~тЬЊЊЎ2вќТЬ,Тѓ.Ђџѓ0Гџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ` \ No newline at end of file +eџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџy§езџ§зџї_џ§зџuџџџџџџ§Я'\вџџџџџџџџџџџџџџџџѓ ї_§ЕџџџѓЩџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџЧџ4џџ§зџї_ќhT_e4Нs ќвџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџє _ +C`Є7FF$рЈє 6Ј(q\tX6ТБPа$ t и `6 |*V@ЊXRЎХф AёX{0lHтЃJ(3\/ тХЦPАГ $2 YGеЫG r Ч$V(&QoЁцZ№Р(0OўКЉзuџ8Љ?Ћї_Ь)[Йj_иТzяџЬ&eџкЉY;7|T0Т!аФ,ЁB(ђ*2 Uёr&(OЏЫѓ0П0ГаМйБF6/ЭtаГебђЯвлЦ]~жm*`QгІBѓjЇђЬ/џѓџџЭ/Ь/9Y.,пdъЊПџeџџЫџ7џџџ§ЕeџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџйrЬДЋЊЊdВЬЋtЂџ0Г0МЫЈПќТЬ,Тџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџи \ No newline at end of file diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS index e290f81..ac2dfed 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS index 7fd9ab2..8be86f0 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA index 59337ab..c0f76d2 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA @@ -1,2 +1,2 @@ JavaSearch 1.0 -TMAP bs=2048 rt=1 fl=-1 id1=1347 id2=1 +TMAP bs=2048 rt=1 fl=-1 id1=1355 id2=1 diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP index 0f25c4d..28f8966 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP and b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP differ diff --git a/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png new file mode 100644 index 0000000..b6e2743 Binary files /dev/null and b/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png differ diff --git a/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png new file mode 100644 index 0000000..07dafd6 Binary files /dev/null and b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png differ diff --git a/help/en_US/scilab_en_US_help/index.html b/help/en_US/scilab_en_US_help/index.html index 2b1442a..12fb83c 100644 --- a/help/en_US/scilab_en_US_help/index.html +++ b/help/en_US/scilab_en_US_help/index.html @@ -38,7 +38,7 @@ -
xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB) +xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0) +xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0,param) [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables.
a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables.
a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix
a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.
a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.
a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
a list containing the the parameters to be set.
a 1xn matrix of doubles, the computed solution of the optimization problem.
//Find the value of x that minimize following function
@@ -130,7 +138,7 @@ find the minimum of f(x) such that
|
- qpipopt_mat >> + qpipoptmat >> |
Solves a linear quadratic problem.
x = qpipoptmat(H,f) +x = qpipoptmat(H,f,A,b) +x = qpipoptmat(H,f,A,b,Aeq,beq) +x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub) +x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0) +x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param) +[xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
a m x n matrix of doubles, represents the linear coefficients in the inequality constraints
a column vector of doubles, represents the linear coefficients in the inequality constraints
a meq x n matrix of doubles, represents the linear coefficients in the equality constraints
a vector of doubles, represents the linear coefficients in the equality constraints
a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
a list containing the the parameters to be set.
a nx1 matrix of doubles, the computed solution of the optimization problem.
a 1x1 matrix of doubles, the function value at x.
Integer identifying the reason the algorithm terminated.
Structure containing information about the optimization.
Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
Search the minimum of a constrained linear quadratic optimization problem specified by : +find the minimum of f(x) such that
+We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by тAndreas WУЄchter and тCarl Laird.
+//Find x in R^6 such that: + +Aeq= [1,-1,1,0,3,1; +-1,0,-3,-4,5,6; +2,5,3,0,1,0]; +beq=[1; 2; 3]; +A= [0,1,0,1,2,-1; +-1,0,2,1,1,0]; +b = [-1; 2.5]; +lb=[-1000; -10000; 0; -1000; -1000; -1000]; +ub=[10000; 100; 1.5; 100; 100; 1000]; +x0 = repmat(0,6,1); +param = list("MaxIter", 300, "CpuTime", 100); +//and minimize 0.5*x'*Q*x + p'*x with +f=[1; 2; 3; 4; 5; 6]; H=eye(6,6); +[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param); +clear H f A b Aeq beq lb ub; | ![]() | ![]() |
// An advanced case where we set some options in symphony @@ -177,7 +177,7 @@ find the minimum or maximum of f(x) such that conLB=repmat(0,nbCon,1); // Upper Bound of constraints conUB=[11927 13727 11551 13056 13460 ]'; -options = ["time_limit" "25"] +options = list("time_limit", 25); // The expected solution : // Output variables xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 .. @@ -186,7 +186,7 @@ find the minimum or maximum of f(x) such that // Optimal value fopt = [ 24381 ] // Calling Symphony -[x,f,iter]= symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options) | ![]() | ![]() |
Solves a mixed integer linear programming constrained optimization problem in intlinprog format.
xopt = symphonymat(f,intcon,A,b) +xopt = symphonymat(f,intcon,A,b,Aeq,beq) +xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub) +xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub,options) +[xopt,fopt,status,output] = symphonymat( ... )
a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective
Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable
Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x тЄ b. A has size M-by-N, where M is the number of constraints and N is number of variables
Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x тЄ b. b has length M, where A is M-by-N
Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables
Linear equality constraint vector, specified as a vector of doubles. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.
Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise in lb тЄ x тЄ ub.
Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise in lb тЄ x тЄ ub.
a list containing the the parameters to be set.
a 1xn matrix of doubles, the computed solution of the optimization problem
a 1x1 matrix of doubles, the function value at x
The output data structure contains detailed informations about the optimization process.
Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by : +find the minimum or maximum of f(x) such that
+We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by тTed Ralphs, тMenal Guzelsoy and тAshutosh Mahajan.
+// Objective function +c = [350*5,330*3,310*4,280*6,500,450,400,100] +// Lower Bound of variable +lb = repmat(0,1,8); +// Upper Bound of variables +ub = [repmat(1,1,4) repmat(%inf,1,4)]; +// Constraint Matrix +Aeq = [5,3,4,6,1,1,1,1; +5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03; +5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;] +beq = [ 25, 1.25, 1.25] +intcon = [1 2 3 4]; +// Calling Symphony +[x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub) | ![]() | ![]() |
// An advanced case where we set some options in symphony +// This problem is taken from +// P.C.Chu and J.E.Beasley +// "A genetic algorithm for the multidimensional knapsack problem", +// Journal of Heuristics, vol. 4, 1998, pp63-86. +// The problem to be solved is: +// Max sum{j=1,...,n} p(j)x(j) +// st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m +// x(j)=0 or 1 +// The function to be maximize i.e. P(j) +objCoef = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 .. +825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 .. +877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 .. +957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 .. +959 668 507 855 986 831 821 825 868 852 832 828 799 686 .. +510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 .. +1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632] +//Constraint Matrix +conMatrix = [ //Constraint 1 +42 41 523 215 819 551 69 193 582 375 367 478 162 898 .. +550 553 298 577 493 183 260 224 852 394 958 282 402 604 .. +164 308 218 61 273 772 191 117 276 877 415 873 902 465 .. +320 870 244 781 86 622 665 155 680 101 665 227 597 354 .. +597 79 162 998 849 136 112 751 735 884 71 449 266 420 .. +797 945 746 46 44 545 882 72 383 714 987 183 731 301 .. +718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298; +//Constraint 2 +509 883 229 569 706 639 114 727 491 481 681 948 687 941 .. +350 253 573 40 124 384 660 951 739 329 146 593 658 816 .. +638 717 779 289 430 851 937 289 159 260 930 248 656 833 .. +892 60 278 741 297 967 86 249 354 614 836 290 893 857 .. +158 869 206 504 799 758 431 580 780 788 583 641 32 653 .. +252 709 129 368 440 314 287 854 460 594 512 239 719 751 .. +708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850; +//Constraint 3 +806 361 199 781 596 669 957 358 259 888 319 751 275 177 .. +883 749 229 265 282 694 819 77 190 551 140 442 867 283 .. +137 359 445 58 440 192 485 744 844 969 50 833 57 877 .. +482 732 968 113 486 710 439 747 174 260 877 474 841 422 .. +280 684 330 910 791 322 404 403 519 148 948 414 894 147 .. +73 297 97 651 380 67 582 973 143 732 624 518 847 113 .. +382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ; +//Constraint 4 +404 197 817 1000 44 307 39 659 46 334 448 599 931 776 .. +263 980 807 378 278 841 700 210 542 636 388 129 203 110 .. +817 502 657 804 662 989 585 645 113 436 610 948 919 115 .. +967 13 445 449 740 592 327 167 368 335 179 909 825 614 .. +987 350 179 415 821 525 774 283 427 275 659 392 73 896 .. +68 982 697 421 246 672 649 731 191 514 983 886 95 846 .. +689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322; +//Constrain 5 +475 36 287 577 45 700 803 654 196 844 657 387 518 143 .. +515 335 942 701 332 803 265 922 908 139 995 845 487 100 .. +447 653 649 738 424 475 425 926 795 47 136 801 904 740 .. +768 460 76 660 500 915 897 25 716 557 72 696 653 933 .. +420 582 810 861 758 647 237 631 271 91 75 756 409 440 .. +483 336 765 637 981 980 202 35 594 689 602 76 767 693 .. +893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ; +]; +nbVar = size(objCoef,2) +conUB=[11927 13727 11551 13056 13460 ]; +// Lower Bound of variables +lb = repmat(0,1,nbVar) +// Upper Bound of variables +ub = repmat(1,1,nbVar) +// Lower Bound of constrains +intcon = [] +for i = 1:nbVar +intcon = [intcon i]; +end +options = list("time_limit", 25); +// The expected solution : +// Output variables +xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 .. +0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 .. +0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0] +// Optimal value +fopt = [ 24381 ] +// Calling Symphony +[x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options); | ![]() | ![]() |