From 29e8e8bbd43892c7fa146c165fdf128f786d6a7b Mon Sep 17 00:00:00 2001 From: Harpreet Date: Mon, 2 Nov 2015 16:20:08 +0530 Subject: README.rst added --- help/en_US/scilab_en_US_help/qpipoptmat.html | 146 +++++++++++++++++++++++++++ 1 file changed, 146 insertions(+) create mode 100644 help/en_US/scilab_en_US_help/qpipoptmat.html (limited to 'help/en_US/scilab_en_US_help/qpipoptmat.html') diff --git a/help/en_US/scilab_en_US_help/qpipoptmat.html b/help/en_US/scilab_en_US_help/qpipoptmat.html new file mode 100644 index 0000000..5e7518e --- /dev/null +++ b/help/en_US/scilab_en_US_help/qpipoptmat.html @@ -0,0 +1,146 @@ + + + qpipoptmat + + + +
+ + + + +
+ << qpipopt + + + Symphony Toolbox + + + symphony >> + +
+
+
+ + + + Symphony Toolbox >> Symphony Toolbox > qpipoptmat + +

+

qpipoptmat

+

Solves a linear quadratic problem.

+ + +

Calling Sequence

+
x = qpipoptmat(H,f)
+x = qpipoptmat(H,f,A,b)
+x = qpipoptmat(H,f,A,b,Aeq,beq)
+x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
+x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
+x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
+[xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
+ +

Parameters

+
H : +

a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.

+
f : +

a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem

+
A : +

a m x n matrix of doubles, represents the linear coefficients in the inequality constraints

+
b : +

a column vector of doubles, represents the linear coefficients in the inequality constraints

+
Aeq : +

a meq x n matrix of doubles, represents the linear coefficients in the equality constraints

+
beq : +

a vector of doubles, represents the linear coefficients in the equality constraints

+
LB : +

a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.

+
UB : +

a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.

+
x0 : +

a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.

+
param : +

a list containing the the parameters to be set.

+
xopt : +

a nx1 matrix of doubles, the computed solution of the optimization problem.

+
fopt : +

a 1x1 matrix of doubles, the function value at x.

+
exitflag : +

Integer identifying the reason the algorithm terminated.

+
output : +

Structure containing information about the optimization.

+
lambda : +

Structure containing the Lagrange multipliers at the solution x (separated by constraint type).

+ +

Description

+

Search the minimum of a constrained linear quadratic optimization problem specified by : +find the minimum of f(x) such that

+

+

We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.

+

+ +

Examples

+
//Find x in R^6 such that:
+
+Aeq= [1,-1,1,0,3,1;
+-1,0,-3,-4,5,6;
+2,5,3,0,1,0];
+beq=[1; 2; 3];
+A= [0,1,0,1,2,-1;
+-1,0,2,1,1,0];
+b = [-1; 2.5];
+lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ub=[10000; 100; 1.5; 100; 100; 1000];
+x0 = repmat(0,6,1);
+param = list("MaxIter", 300, "CpuTime", 100);
+//and minimize 0.5*x'*Q*x + p'*x with
+f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param);
+clear H f A b Aeq beq lb ub;
+ +

Examples

+
//Find the value of x that minimize following function
+// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
+// Subject to:
+// x1 + x2 ≤ 2
+// –x1 + 2x2 ≤ 2
+// 2x1 + x2 ≤ 3
+// 0 ≤ x1, 0 ≤ x2.
+H = [1 -1; -1 2];
+f = [-2; -6];
+A = [1 1; -1 2; 2 1];
+b = [2; 2; 3];
+lb = [0; 0];
+ub = [%inf; %inf];
+[xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
+ +

Authors

+
+
+ +
+ + + + + + +
Report an issue
+ << qpipopt + + + Symphony Toolbox + + + symphony >> + +
+
+
+ + -- cgit