From d5a0869a7d1482b67f3fd42805948ee30a05eb1e Mon Sep 17 00:00:00 2001 From: Harpreet Date: Thu, 4 Feb 2016 15:36:02 +0530 Subject: Source files --- help/en_US/scilab_en_US_help/qpipopt_mat.html | 139 -------------------------- 1 file changed, 139 deletions(-) delete mode 100644 help/en_US/scilab_en_US_help/qpipopt_mat.html (limited to 'help/en_US/scilab_en_US_help/qpipopt_mat.html') diff --git a/help/en_US/scilab_en_US_help/qpipopt_mat.html b/help/en_US/scilab_en_US_help/qpipopt_mat.html deleted file mode 100644 index 2089d8b..0000000 --- a/help/en_US/scilab_en_US_help/qpipopt_mat.html +++ /dev/null @@ -1,139 +0,0 @@ - - - qpipopt_mat - - - -
- - - - -
- << qpipopt - - - Symphony Toolbox - - - qpipoptmat >> - -
-
-
- - - - Symphony Toolbox >> Symphony Toolbox > qpipopt_mat - -

-

qpipopt_mat

-

Solves a linear quadratic problem.

- - -

Calling Sequence

-
xopt = qpipopt_mat(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
-x = qpipopt_mat(H,f)
-x = qpipopt_mat(H,f,A,b)
-x = qpipopt_mat(H,f,A,b,Aeq,beq)
-x = qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
-[xopt,fopt,exitflag,output,lamda] = qpipopt_mat( ... )
- -

Parameters

-
H : -

a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.

-
f : -

a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem

-
A : -

a m x n matrix of doubles, represents the linear coefficients in the inequality constraints

-
b : -

a column vector of doubles, represents the linear coefficients in the inequality constraints

-
Aeq : -

a meq x n matrix of doubles, represents the linear coefficients in the equality constraints

-
beq : -

a vector of doubles, represents the linear coefficients in the equality constraints

-
LB : -

a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.

-
UB : -

a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.

-
xopt : -

a nx1 matrix of doubles, the computed solution of the optimization problem.

-
fopt : -

a 1x1 matrix of doubles, the function value at x.

-
exitflag : -

Integer identifying the reason the algorithm terminated.

-
output : -

Structure containing information about the optimization.

-
lambda : -

Structure containing the Lagrange multipliers at the solution x (separated by constraint type).

- -

Description

-

Search the minimum of a constrained linear quadratic optimization problem specified by : -find the minimum of f(x) such that

-

-

We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.

-

- -

Examples

-
//Find x in R^6 such that:
-
-Aeq= [1,-1,1,0,3,1;
--1,0,-3,-4,5,6;
-2,5,3,0,1,0];
-beq=[1; 2; 3];
-A= [0,1,0,1,2,-1;
--1,0,2,1,1,0];
-b = [-1; 2.5];
-lb=[-1000; -10000; 0; -1000; -1000; -1000];
-ub=[10000; 100; 1.5; 100; 100; 1000];
-//and minimize 0.5*x'*Q*x + p'*x with
-f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
-clear H f A b Aeq beq lb ub;
- -

Examples

-
//Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-H = [1 -1; -1 2];
-f = [-2; -6];
-A = [1 1; -1 2; 2 1];
-b = [2; 2; 3];
-lb = [0; 0];
-ub = [%inf; %inf];
-[xopt,fopt,exitflag,output,lambda] = qpipopt_mat(H,f,A,b,[],[],lb,ub)
- -

Authors

-
-
- -
- - - - - - -
Report an issue
- << qpipopt - - - Symphony Toolbox - - - qpipoptmat >> - -
-
-
- - -- cgit