From d5a0869a7d1482b67f3fd42805948ee30a05eb1e Mon Sep 17 00:00:00 2001 From: Harpreet Date: Thu, 4 Feb 2016 15:36:02 +0530 Subject: Source files --- help/en_US/scilab_en_US_help/fmincon.html | 305 ------------------------------ 1 file changed, 305 deletions(-) delete mode 100644 help/en_US/scilab_en_US_help/fmincon.html (limited to 'help/en_US/scilab_en_US_help/fmincon.html') diff --git a/help/en_US/scilab_en_US_help/fmincon.html b/help/en_US/scilab_en_US_help/fmincon.html deleted file mode 100644 index ea3077f..0000000 --- a/help/en_US/scilab_en_US_help/fmincon.html +++ /dev/null @@ -1,305 +0,0 @@ - - - fmincon - - - -
- - - - -
- << fminbnd - - - FOSSEE Optimization Toolbox - - - fminimax >> - -
-
-
- - - - FOSSEE Optimization Toolbox >> FOSSEE Optimization Toolbox > fmincon - -

-

fmincon

-

Solves a multi-variable constrainted optimization problem

- - -

Calling Sequence

-
xopt = fmincon(f,x0,A,b)
-xopt = fmincon(f,x0,A,b,Aeq,beq)
-xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub)
-xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc)
-xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options)
-[xopt,fopt] = fmincon(.....)
-[xopt,fopt,exitflag]= fmincon(.....)
-[xopt,fopt,exitflag,output]= fmincon(.....)
-[xopt,fopt,exitflag,output,lambda]=fmincon(.....)
-[xopt,fopt,exitflag,output,lambda,gradient]=fmincon(.....)
-[xopt,fopt,exitflag,output,lambda,gradient,hessian]=fmincon(.....)
- -

Parameters

-
f : -

a function, representing the objective function of the problem

-
x0 : -

a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables

-
A : -

a matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints

-
b : -

a vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1)

-
Aeq : -

a matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints

-
beq : -

a vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1)

-
lb : -

a vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables

-
ub : -

a vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables

-
nlc : -

a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.

-
options : -

a list, containing the option for user to specify. See below for details.

-
xopt : -

a vector of doubles, cointating the computed solution of the optimization problem

-
fopt : -

a scalar of double, containing the the function value at x

-
exitflag : -

a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.

-
output : -

a structure, containing the information about the optimization. See below for details.

-
lambda : -

a structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.

-
gradient : -

a vector of doubles, containing the Objective's gradient of the solution.

-
hessian : -

a matrix of doubles, containing the Lagrangian's hessian of the solution.

- -

Description

-

Search the minimum of a constrained optimization problem specified by : -Find the minimum of f(x) such that

-

-

The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.

-

The options allows the user to set various parameters of the Optimization problem. -It should be defined as type "list" and contains the following fields. -

-

The exitflag allows to know the status of the optimization which is given back by Ipopt. -

-

For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/

-

The output data structure contains detailed informations about the optimization process. -It has type "struct" and contains the following fields. -

-

The lambda data structure contains the Lagrange multipliers at the end -of optimization. In the current version the values are returned only when the the solution is optimal. -It has type "struct" and contains the following fields. -

-

- -

Examples

-
//Find x in R^2 such that it minimizes:
-//f(x)= -x1 -x2/3
-//x0=[0,0]
-//constraint-1 (c1): x1 + x2 <= 2
-//constraint-2 (c2): x1 + x2/4 <= 1
-//constraint-3 (c3): x1 - x2 <= 2
-//constraint-4 (c4): -x1/4 - x2 <= 1
-//constraint-5 (c5): -x1 - x2 <= -1
-//constraint-6 (c6): -x1 + x2 <= 2
-//constraint-7 (c7): x1 + x2 = 2
-//Objective function to be minimised
-function y=f(x)
-y=-x(1)-x(2)/3;
-endfunction
-//Starting point, linear constraints and variable bounds
-x0=[0 , 0];
-A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
-b=[2;1;2;1;-1;2];
-Aeq=[1,1];
-beq=[2];
-lb=[];
-ub=[];
-nlc=[];
-//Gradient of objective function
-function y=fGrad(x)
-y= [-1,-1/3];
-endfunction
-//Hessian of lagrangian
-function y=lHess(x, obj, lambda)
-y= obj*[0,0;0,0]
-endfunction
-//Options
-options=list("GradObj", fGrad, "Hessian", lHess);
-//Calling Ipopt
-[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
-// Press ENTER to continue
- -

Examples

-
//Find x in R^3 such that it minimizes:
-//f(x)= x1*x2 + x2*x3
-//x0=[0.1 , 0.1 , 0.1]
-//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
-//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
-//Objective function to be minimised
-function y=f(x)
-y=x(1)*x(2)+x(2)*x(3);
-endfunction
-//Starting point, linear constraints and variable bounds
-x0=[0.1 , 0.1 , 0.1];
-A=[];
-b=[];
-Aeq=[];
-beq=[];
-lb=[];
-ub=[];
-//Nonlinear constraints
-function [c, ceq]=nlc(x)
-c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
-ceq = [];
-endfunction
-//Gradient of objective function
-function y=fGrad(x)
-y= [x(2),x(1)+x(3),x(2)];
-endfunction
-//Hessian of the Lagrange Function
-function y=lHess(x, obj, lambda)
-y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2]
-endfunction
-//Gradient of Non-Linear Constraints
-function [cg, ceqg]=cGrad(x)
-cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
-ceqg=[];
-endfunction
-//Options
-options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
-//Calling Ipopt
-[x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
-// Press ENTER to continue
- -

Examples

-
//The below problem is an unbounded problem:
-//Find x in R^3 such that it minimizes:
-//f(x)= -(x1^2 + x2^2 + x3^2)
-//x0=[0.1 , 0.1 , 0.1]
-//  x1 <= 0
-//  x2 <= 0
-//  x3 <= 0
-//Objective function to be minimised
-function y=f(x)
-y=-(x(1)^2+x(2)^2+x(3)^2);
-endfunction
-//Starting point, linear constraints and variable bounds
-x0=[0.1 , 0.1 , 0.1];
-A=[];
-b=[];
-Aeq=[];
-beq=[];
-lb=[];
-ub=[0,0,0];
-//Options
-options=list("MaxIter", [1500], "CpuTime", [500]);
-//Calling Ipopt
-[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options)
-// Press ENTER to continue
- -

Examples

-
//The below problem is an infeasible problem:
-//Find x in R^3 such that in minimizes:
-//f(x)=x1*x2 + x2*x3
-//x0=[1,1,1]
-//constraint-1 (c1): x1^2 <= 1
-//constraint-2 (c2): x1^2 + x2^2 <= 1
-//constraint-3 (c3): x3^2 <= 1
-//constraint-4 (c4): x1^3 = 0.5
-//constraint-5 (c5): x2^2 + x3^2 = 0.75
-// 0 <= x1 <=0.6
-// 0.2 <= x2 <= inf
-// -inf <= x3 <= 1
-//Objective function to be minimised
-function y=f(x)
-y=x(1)*x(2)+x(2)*x(3);
-endfunction
-//Starting point, linear constraints and variable bounds
-x0=[1,1,1];
-A=[];
-b=[];
-Aeq=[];
-beq=[];
-lb=[0 0.2,-%inf];
-ub=[0.6 %inf,1];
-//Nonlinear constraints
-function [c, ceq]=nlc(x)
-c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
-ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
-endfunction
-//Gradient of objective function
-function y=fGrad(x)
-y= [x(2),x(1)+x(3),x(2)];
-endfunction
-//Hessian of the Lagrange Function
-function y=lHess(x, obj, lambda)
-y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1    ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2];
-endfunction
-//Gradient of Non-Linear Constraints
-function [cg, ceqg]=cGrad(x)
-cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
-ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
-endfunction
-//Options
-options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
-//Calling Ipopt
-[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
- -

Authors

-
-
- -
- - - - - - -
Report an issue
- << fminbnd - - - FOSSEE Optimization Toolbox - - - fminimax >> - -
-
-
- - -- cgit