From d5a0869a7d1482b67f3fd42805948ee30a05eb1e Mon Sep 17 00:00:00 2001 From: Harpreet Date: Thu, 4 Feb 2016 15:36:02 +0530 Subject: Source files --- help/en_US/scilab_en_US_help/fmincon.html | 305 ------------------------------ 1 file changed, 305 deletions(-) delete mode 100644 help/en_US/scilab_en_US_help/fmincon.html (limited to 'help/en_US/scilab_en_US_help/fmincon.html') diff --git a/help/en_US/scilab_en_US_help/fmincon.html b/help/en_US/scilab_en_US_help/fmincon.html deleted file mode 100644 index ea3077f..0000000 --- a/help/en_US/scilab_en_US_help/fmincon.html +++ /dev/null @@ -1,305 +0,0 @@ -
- -Solves a multi-variable constrainted optimization problem
xopt = fmincon(f,x0,A,b) -xopt = fmincon(f,x0,A,b,Aeq,beq) -xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub) -xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc) -xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options) -[xopt,fopt] = fmincon(.....) -[xopt,fopt,exitflag]= fmincon(.....) -[xopt,fopt,exitflag,output]= fmincon(.....) -[xopt,fopt,exitflag,output,lambda]=fmincon(.....) -[xopt,fopt,exitflag,output,lambda,gradient]=fmincon(.....) -[xopt,fopt,exitflag,output,lambda,gradient,hessian]=fmincon(.....)
a function, representing the objective function of the problem
a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
a matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints
a vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1)
a matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints
a vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1)
a vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
a vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.
a list, containing the option for user to specify. See below for details.
a vector of doubles, cointating the computed solution of the optimization problem
a scalar of double, containing the the function value at x
a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
a structure, containing the information about the optimization. See below for details.
a structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.
a vector of doubles, containing the Objective's gradient of the solution.
a matrix of doubles, containing the Lagrangian's hessian of the solution.
Search the minimum of a constrained optimization problem specified by : -Find the minimum of f(x) such that
-The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
-The options allows the user to set various parameters of the Optimization problem. -It should be defined as type "list" and contains the following fields. -
The exitflag allows to know the status of the optimization which is given back by Ipopt. -
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
-The output data structure contains detailed informations about the optimization process. -It has type "struct" and contains the following fields. -
The lambda data structure contains the Lagrange multipliers at the end -of optimization. In the current version the values are returned only when the the solution is optimal. -It has type "struct" and contains the following fields. -
//Find x in R^2 such that it minimizes: -//f(x)= -x1 -x2/3 -//x0=[0,0] -//constraint-1 (c1): x1 + x2 <= 2 -//constraint-2 (c2): x1 + x2/4 <= 1 -//constraint-3 (c3): x1 - x2 <= 2 -//constraint-4 (c4): -x1/4 - x2 <= 1 -//constraint-5 (c5): -x1 - x2 <= -1 -//constraint-6 (c6): -x1 + x2 <= 2 -//constraint-7 (c7): x1 + x2 = 2 -//Objective function to be minimised -function y=f(x) -y=-x(1)-x(2)/3; -endfunction -//Starting point, linear constraints and variable bounds -x0=[0 , 0]; -A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; -b=[2;1;2;1;-1;2]; -Aeq=[1,1]; -beq=[2]; -lb=[]; -ub=[]; -nlc=[]; -//Gradient of objective function -function y=fGrad(x) -y= [-1,-1/3]; -endfunction -//Hessian of lagrangian -function y=lHess(x, obj, lambda) -y= obj*[0,0;0,0] -endfunction -//Options -options=list("GradObj", fGrad, "Hessian", lHess); -//Calling Ipopt -[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) -// Press ENTER to continue | ![]() | ![]() |
//Find x in R^3 such that it minimizes: -//f(x)= x1*x2 + x2*x3 -//x0=[0.1 , 0.1 , 0.1] -//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2 -//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10 -//Objective function to be minimised -function y=f(x) -y=x(1)*x(2)+x(2)*x(3); -endfunction -//Starting point, linear constraints and variable bounds -x0=[0.1 , 0.1 , 0.1]; -A=[]; -b=[]; -Aeq=[]; -beq=[]; -lb=[]; -ub=[]; -//Nonlinear constraints -function [c, ceq]=nlc(x) -c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10]; -ceq = []; -endfunction -//Gradient of objective function -function y=fGrad(x) -y= [x(2),x(1)+x(3),x(2)]; -endfunction -//Hessian of the Lagrange Function -function y=lHess(x, obj, lambda) -y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2] -endfunction -//Gradient of Non-Linear Constraints -function [cg, ceqg]=cGrad(x) -cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)]; -ceqg=[]; -endfunction -//Options -options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad); -//Calling Ipopt -[x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) -// Press ENTER to continue | ![]() | ![]() |
//The below problem is an unbounded problem: -//Find x in R^3 such that it minimizes: -//f(x)= -(x1^2 + x2^2 + x3^2) -//x0=[0.1 , 0.1 , 0.1] -// x1 <= 0 -// x2 <= 0 -// x3 <= 0 -//Objective function to be minimised -function y=f(x) -y=-(x(1)^2+x(2)^2+x(3)^2); -endfunction -//Starting point, linear constraints and variable bounds -x0=[0.1 , 0.1 , 0.1]; -A=[]; -b=[]; -Aeq=[]; -beq=[]; -lb=[]; -ub=[0,0,0]; -//Options -options=list("MaxIter", [1500], "CpuTime", [500]); -//Calling Ipopt -[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options) -// Press ENTER to continue | ![]() | ![]() |
//The below problem is an infeasible problem: -//Find x in R^3 such that in minimizes: -//f(x)=x1*x2 + x2*x3 -//x0=[1,1,1] -//constraint-1 (c1): x1^2 <= 1 -//constraint-2 (c2): x1^2 + x2^2 <= 1 -//constraint-3 (c3): x3^2 <= 1 -//constraint-4 (c4): x1^3 = 0.5 -//constraint-5 (c5): x2^2 + x3^2 = 0.75 -// 0 <= x1 <=0.6 -// 0.2 <= x2 <= inf -// -inf <= x3 <= 1 -//Objective function to be minimised -function y=f(x) -y=x(1)*x(2)+x(2)*x(3); -endfunction -//Starting point, linear constraints and variable bounds -x0=[1,1,1]; -A=[]; -b=[]; -Aeq=[]; -beq=[]; -lb=[0 0.2,-%inf]; -ub=[0.6 %inf,1]; -//Nonlinear constraints -function [c, ceq]=nlc(x) -c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1]; -ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75]; -endfunction -//Gradient of objective function -function y=fGrad(x) -y= [x(2),x(1)+x(3),x(2)]; -endfunction -//Hessian of the Lagrange Function -function y=lHess(x, obj, lambda) -y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1 ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2]; -endfunction -//Gradient of Non-Linear Constraints -function [cg, ceqg]=cGrad(x) -cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)]; -ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)]; -endfunction -//Options -options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad); -//Calling Ipopt -[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) | ![]() | ![]() |