From b97c2cb250a9af50112302461eb032fc31a02aae Mon Sep 17 00:00:00 2001 From: Harpreet Date: Mon, 25 Jan 2016 14:20:26 +0530 Subject: fmincon updated --- README.md | 2 +- help/en_US/master_help.xml | 2 + help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS | Bin 8232 -> 8587 bytes .../scilab_en_US_help/JavaHelpSearch/DOCS.TAB | Bin 922 -> 961 bytes .../en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS | Bin 296 -> 303 bytes .../scilab_en_US_help/JavaHelpSearch/POSITIONS | Bin 43830 -> 46716 bytes help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA | 2 +- help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP | Bin 18432 -> 18432 bytes .../scilab_en_US_help/_LaTeX_fminimax.xml_1.png | Bin 0 -> 5367 bytes .../scilab_en_US_help/_LaTeX_fminimax.xml_2.png | Bin 0 -> 1295 bytes help/en_US/scilab_en_US_help/fgoalattain.html | 18 +- help/en_US/scilab_en_US_help/fmincon.html | 4 +- help/en_US/scilab_en_US_help/fminimax.html | 239 +++++++++++++++++++++ help/en_US/scilab_en_US_help/fminunc.html | 4 +- help/en_US/scilab_en_US_help/index.html | 6 + help/en_US/scilab_en_US_help/jhelpmap.jhm | 1 + help/en_US/scilab_en_US_help/jhelptoc.xml | 1 + .../section_19f4f1e5726c01d683e8b82be0a7e910.html | 6 + jar/scilab_en_US_help.jar | Bin 252170 -> 267265 bytes macros/fgoalattain.bin | Bin 79236 -> 79072 bytes macros/fminbnd.bin | Bin 53656 -> 53664 bytes macros/fminbnd.sci | 7 + macros/fmincon.bin | Bin 149436 -> 149444 bytes macros/fmincon.sci | 4 +- macros/fminimax.bin | Bin 85668 -> 85724 bytes macros/fminunc.bin | Bin 60820 -> 60828 bytes macros/fminunc.sci | 4 +- macros/linprog.bin | Bin 28836 -> 28828 bytes macros/linprog.sci | 3 +- 29 files changed, 280 insertions(+), 23 deletions(-) create mode 100644 help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_1.png create mode 100644 help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_2.png create mode 100644 help/en_US/scilab_en_US_help/fminimax.html diff --git a/README.md b/README.md index 933d76d..a22a508 100644 --- a/README.md +++ b/README.md @@ -9,4 +9,4 @@ Tested with Symphony 5.6.10, Ipopt 3.12.4 and Scilab 5.5.2 2. Run `exec loader.sce` 3. The Toolbox is now ready. -## Note: This library is only for linux. +## Note: This version is only for linux. diff --git a/help/en_US/master_help.xml b/help/en_US/master_help.xml index 0e162f7..cf1946c 100644 --- a/help/en_US/master_help.xml +++ b/help/en_US/master_help.xml @@ -4,6 +4,7 @@ + @@ -89,6 +90,7 @@ &a745e19a6383796e6f5680cdcc44cfcce; &a2b24cb19de46f878f11e6be9eb411170; &a52664d077cac340a0384efe1ac107088; +&a0184dce5b9269d9795f0858d46c1c6f0; &a14f1077f437dbe35eb1cac51fed7a9fc; &aa809ed678033fc05c9b60a71de55b2ce; &a3d4ec65684b561d91f7a255acd23f51c; diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS index 5ece28b..4ae0096 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB index 5ba83c4..5ea5806 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB and b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS index bfdb148..deb246c 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS index c20654a..88014cd 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS and b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS differ diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA index 0648b6b..8dc6ddf 100644 --- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA +++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA @@ -1,2 +1,2 @@ JavaSearch 1.0 -TMAP bs=2048 rt=1 fl=-1 id1=1494 id2=1 +TMAP bs=2048 rt=1 fl=-1 id1=1535 id2=1 diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP index af633ee..d8580ce 100644 Binary files a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP and b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP differ diff --git a/help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_1.png new file mode 100644 index 0000000..cc11a01 Binary files /dev/null and b/help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_1.png differ diff --git a/help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_2.png b/help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_2.png new file mode 100644 index 0000000..6a9edc4 Binary files /dev/null and b/help/en_US/scilab_en_US_help/_LaTeX_fminimax.xml_2.png differ diff --git a/help/en_US/scilab_en_US_help/fgoalattain.html b/help/en_US/scilab_en_US_help/fgoalattain.html index a9aa43d..0f7fdc9 100644 --- a/help/en_US/scilab_en_US_help/fgoalattain.html +++ b/help/en_US/scilab_en_US_help/fgoalattain.html @@ -145,7 +145,7 @@ It has type "struct" and contains the following fields.
function f1=gattainObjfun(x) + |
Solves minimax constraint problem
x = fminimax(fun,x0) +x = fminimax(fun,x0,A,b) +x = fminimax(fun,x0,A,b,Aeq,beq) +x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub) +x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun) +x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun,options) +[x, fval] = fmincon(.....) +[x, fval, maxfval]= fmincon(.....) +[x, fval, maxfval, exitflag]= fmincon(.....) +[x, fval, maxfval, exitflag, output]= fmincon(.....) +[x, fval, maxfval, exitflag, output, lambda]= fmincon(.....)
The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x.
a nx1 or 1xn matrix of doubles, where n is the number of variables, the initial guess for the optimization algorithm
a nil x n matrix of doubles, where n is the number of variables and nil is the number of linear inequalities. If A==[] and b==[], it is assumed that there is no linear inequality constraints. If (A==[] & b<>[]), fminimax generates an error (the same happens if (A<>[] & b==[]))
a nil x 1 matrix of doubles, where nil is the number of linear inequalities
a nel x n matrix of doubles, where n is the number of variables and nel is the number of linear equalities. If Aeq==[] and beq==[], it is assumed that there is no linear equality constraints. If (Aeq==[] & beq<>[]), fminimax generates an error (the same happens if (Aeq<>[] & beq==[]))
a nel x 1 matrix of doubles, where nel is the number of linear equalities
a nx1 or 1xn matrix of doubles, where n is the number of variables. The lower bound for x. If lb==[], then the lower bound is automatically set to -inf
a nx1 or 1xn matrix of doubles, where n is the number of variables. The upper bound for x. If ub==[], then the upper bound is automatically set to +inf
function that computes the nonlinear inequality constraints c(x) <= 0 and nonlinear equality constraints ceq(x) = 0.
a nx1 matrix of doubles, the computed solution of the optimization problem
a vector of doubles, the value of fun at x
a 1x1 matrix of doubles, the maximum value in vector fval
a 1x1 matrix of floating point integers, the exit status
a struct, the details of the optimization process
a struct, the Lagrange multipliers at optimum
a list, containing the option for user to specify. See below for details.
fminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
++
Currently, fminimax calls fmincon which uses the ip-opt algorithm.
+max-min problems can also be solved with fminimax, using the identity
++
The options allows the user to set various parameters of the Optimization problem. +It should be defined as type "list" and contains the following fields. +
The objective function must have header : +
+where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F. +On input, the variable x contains the current point and, on output, the variable F must contain the objective function values. +By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of minmaxObjfun. In case the GradObj option is off and GradConstr option is on, fminimax approximates minmaxObjfun gradient using numderivative toolbox.
+If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
+Furthermore, we must enable the "GradObj" option with the statement : +
minimaxOptions = list("GradObj",fGrad); |
The constraint function must have header : +
+where x is a n x 1 matrix of dominmaxUbles, c is a 1 x nni matrix of doubles and ceq is a 1 x nne matrix of doubles (nni : number of nonlinear inequality constraints, nne : number of nonlinear equality constraints). +On input, the variable x contains the current point and, on output, the variable c must contain the nonlinear inequality constraints and ceq must contain the nonlinear equality constraints. +By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of confun. In case the GradObj option is on and GradCons option is off, fminimax approximates confun gradient using numderivative toolbox.
+If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
+Furthermore, we must enable the "GradCon" option with the statement : +
minimaxOptions = list("GradCon",confunGrad); |
The constraint derivative function must have header : +
+where dc is a nni x n matrix of doubles and dceq is a nne x n matrix of doubles. +The exitflag allows to know the status of the optimization which is given back by Ipopt. +
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+The output data structure contains detailed informations about the optimization process. +It has type "struct" and contains the following fields. +
The lambda data structure contains the Lagrange multipliers at the end +of optimization. In the current version the values are returned only when the the solution is optimal. +It has type "struct" and contains the following fields. +
// A case where we provide the gradient of the objective +// functions and the Jacobian matrix of the constraints. +// The objective function and its gradient +function f=myfun(x) +f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304; +f(2)= -x(1)^2 - 3*x(2)^2; +f(3)= x(1) + 3*x(2) -18; +f(4)= -x(1) - x(2); +f(5)= x(1) + x(2) - 8; +endfunction +// Defining gradient of myfun +function G=myfungrad(x) +G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1; +2*x(2) - 40, -6*x(2), 3, -1, 1; ]' +endfunction +// The nonlinear constraints and the Jacobian +// matrix of the constraints +function [c, ceq]=confun(x) +// Inequality constraints +c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10] +// No nonlinear equality constraints +ceq=[] +endfunction +// Defining gradient of confungrad +function [DC, DCeq]=cgrad(x) +// DC(:,i) = gradient of the i-th constraint +// DC = [ +// Dc1/Dx1 Dc1/Dx2 +// Dc2/Dx1 Dc2/Dx2 +// ] +DC= [ +x(2)-1, -x(2) +x(1)-1, -x(1) +]' +DCeq = []' +endfunction +// Test with both gradient of objective and gradient of constraints +minimaxOptions = list("GradObj",myfungrad,"GradCon",cgrad); +// The initial guess +x0 = [0,10]; +// The expected solution : only 4 digits are guaranteed +//xopt = [0.92791 7.93551] +//fopt = [6.73443 -189.778 6.73443 -8.86342 0.86342] +maxfopt = 6.73443 +// Run fminimax +[xopt,fopt,maxfval,exitflag,output] = fminimax(myfun,x0,[],[],[],[],[],[], confun, minimaxOptions) |