summaryrefslogtreecommitdiff
path: root/macros/qpipopt.sci~
diff options
context:
space:
mode:
Diffstat (limited to 'macros/qpipopt.sci~')
-rw-r--r--macros/qpipopt.sci~233
1 files changed, 0 insertions, 233 deletions
diff --git a/macros/qpipopt.sci~ b/macros/qpipopt.sci~
deleted file mode 100644
index 35e604b..0000000
--- a/macros/qpipopt.sci~
+++ /dev/null
@@ -1,233 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-
-function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
- // Solves a linear quadratic problem.
- //
- // Calling Sequence
- // xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
- // xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0)
- // xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0,param)
- // [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
- //
- // Parameters
- // nbVar : a 1 x 1 matrix of doubles, number of variables
- // nbCon : a 1 x 1 matrix of doubles, number of constraints
- // Q : a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
- // p : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
- // LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
- // UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
- // conMatrix : a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix
- // conLB : a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.
- // conUB : a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.
- // x0 : a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
- // param : a list containing the the parameters to be set.
- // xopt : a 1xn matrix of doubles, the computed solution of the optimization problem.
- // fopt : a 1x1 matrix of doubles, the function value at x.
- // exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
- //
- // Description
- // Search the minimum of a constrained linear quadratic optimization problem specified by :
- // find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & 1/2*x'*Q*x + p'*x \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- //
- // Examples
- // //Find x in R^6 such that:
- // conMatrix= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0
- // 0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // conLB=[1;2;3;-%inf;-%inf];
- // conUB = [1;2;3;-1;2.5];
- // lb=[-1000;-10000; 0; -1000; -1000; -1000];
- // ub=[10000; 100; 1.5; 100; 100; 1000];
- // //and minimize 0.5*x'*Q*x + p'*x with
- // p=[1; 2; 3; 4; 5; 6]; Q=eye(6,6);
- // nbVar = 6;
- // nbCon = 5;
- // x0 = repmat(0,nbVar,1);
- // param = list("MaxIter", 300, "CpuTime", 100);
- // [xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param)
- //
- // Examples
- // //Find the value of x that minimize following function
- // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
- // // Subject to:
- // // x1 + x2 ≤ 2
- // // –x1 + 2x2 ≤ 2
- // // 2x1 + x2 ≤ 3
- // // 0 ≤ x1, 0 ≤ x2.
- // Q = [1 -1; -1 2];
- // p = [-2; -6];
- // conMatrix = [1 1; -1 2; 2 1];
- // conUB = [2; 2; 3];
- // conLB = [-%inf; -%inf; -%inf];
- // lb = [0; 0];
- // ub = [%inf; %inf];
- // nbVar = 2;
- // nbCon = 3;
- // [xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs < 9 | rhs > 11 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 9, 10 or 11"), "qpipopt", rhs);
- error(errmsg)
- end
-
-
- nbVar = varargin(1);
- nbCon = varargin(2);
- Q = varargin(3);
- p = varargin(4);
- LB = varargin(5);
- UB = varargin(6);
- conMatrix = varargin(7);
- conLB = varargin(8);
- conUB = varargin(9);
-
-
- if ( rhs<10 | size(varargin(10)) ==0 ) then
- x0 = repmat(0,nbVar,1);
- else
- x0 = varargin(10);
- end
-
- if ( rhs<11 ) then
- param = [];
- else
- param =varargin(11);
- end
-
- if (modulo(size(param),2)) then
- errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipopt");
- error(errmsg);
- end
-
-
- options = list(..
- "MaxIter" , [3000], ...
- "CpuTime" , [600] ...
- );
-
- for i = 1:(size(param))/2
-
- select param(2*i-1)
- case "MaxIter" then
- options(1) = param(2*i);
- case "CpuTime" then
- options(3) = param(2*i);
- else
- errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "qpipopt", param(2*i-1));
- error(errmsg)
- end
- end
-
- //IPOpt wants it in row matrix form
- p = p';
- LB = LB';
- UB = UB';
- conLB = conLB';
- conUB = conUB';
- x0 = x0';
-
- //Checking the Q matrix which needs to be a symmetric matrix
- if ( ~isequal(Q,Q') ) then
- errmsg = msprintf(gettext("%s: Q is not a symmetric matrix"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Q which should equal to the number of variable
- if ( size(Q) ~= [nbVar nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of Q is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of p which should equal to the number of variable
- if ( size(p,2) ~= [nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of p is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-
- //Check the size of constraint which should equal to the number of variables
- if ( size(conMatrix,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The size of constraints is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Lower Bound which should equal to the number of variables
- if ( size(LB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of constraints of Lower Bound which should equal to the number of constraints
- if ( size(conLB,2) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Lower Bound of constraints is not equal to the number of constraints"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of constraints of Upper Bound which should equal to the number of constraints
- if ( size(conUB,2) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Upper Bound of constraints is not equal to the number of constraints"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of initial of variables which should equal to the number of variables
- if ( size(x0,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The initial guess of variables is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-
- [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options);
-
- xopt = xopt';
- exitflag = status;
- output = struct("Iterations" , []);
- output.Iterations = iter;
- lambda = struct("lower" , [], ..
- "upper" , [], ..
- "constraint" , []);
-
- lambda.lower = Zl;
- lambda.upper = Zu;
- lambda.constraint = lmbda;
-
-
-endfunction