summaryrefslogtreecommitdiff
path: root/macros/lsqlin.sci
diff options
context:
space:
mode:
Diffstat (limited to 'macros/lsqlin.sci')
-rw-r--r--macros/lsqlin.sci372
1 files changed, 372 insertions, 0 deletions
diff --git a/macros/lsqlin.sci b/macros/lsqlin.sci
new file mode 100644
index 0000000..003edc5
--- /dev/null
+++ b/macros/lsqlin.sci
@@ -0,0 +1,372 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// Author: Harpreet Singh
+// Organization: FOSSEE, IIT Bombay
+// Email: harpreet.mertia@gmail.com
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+
+
+function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
+ // Solves a linear quadratic problem.
+ //
+ // Calling Sequence
+ // x = lsqlin(C,d,A,b)
+ // x = lsqlin(C,d,A,b,Aeq,beq)
+ // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
+ // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
+ // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
+ // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
+ //
+ // Parameters
+ // C : a matrix of doubles, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x.
+ // d : a vector of doubles, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations.
+ // A : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // b : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
+ // beq : a vector of doubles, represents the linear coefficients in the equality constraints
+ // LB : a vector of doubles, where n is number of variables, contains lower bounds of the variables.
+ // UB : a vector of doubles, where n is number of variables, contains upper bounds of the variables.
+ // x0 : a vector of doubles, contains initial guess of variables.
+ // param : a list containing the the parameters to be set.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
+ // exitflag : Integer identifying the reason the algorithm terminated.
+ // output : Structure containing information about the optimization.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
+ //
+ // Description
+ // Search the minimum of a constrained linear least square problem specified by :
+ // find the minimum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & 1/2||C*x - d||_2^2 \\
+ // & \text{subject to} & A.x \leq b \\
+ // & & Aeq.x \leq beq \\
+ // & & lb \leq x \leq ub \\
+ // \end{eqnarray}
+ // </latex>
+ //
+ // We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ //
+ // Examples
+ // //A simple linear least square example
+ // C = [0.9501 0.7620 0.6153 0.4057
+ // 0.2311 0.4564 0.7919 0.9354
+ // 0.6068 0.0185 0.9218 0.9169
+ // 0.4859 0.8214 0.7382 0.4102
+ // 0.8912 0.4447 0.1762 0.8936];
+ // d = [0.0578
+ // 0.3528
+ // 0.8131
+ // 0.0098
+ // 0.1388];
+ // A = [0.2027 0.2721 0.7467 0.4659
+ // 0.1987 0.1988 0.4450 0.4186
+ // 0.6037 0.0152 0.9318 0.8462];
+ // b = [0.5251
+ // 0.2026
+ // 0.6721];
+ // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
+ //
+ // Examples
+ // C = [0.9501 0.7620 0.6153 0.4057
+ // 0.2311 0.4564 0.7919 0.9354
+ // 0.6068 0.0185 0.9218 0.9169
+ // 0.4859 0.8214 0.7382 0.4102
+ // 0.8912 0.4447 0.1762 0.8936];
+ // d = [0.0578
+ // 0.3528
+ // 0.8131
+ // 0.0098
+ // 0.1388];
+ // A =[0.2027 0.2721 0.7467 0.4659
+ // 0.1987 0.1988 0.4450 0.4186
+ // 0.6037 0.0152 0.9318 0.8462];
+ // b =[0.5251
+ // 0.2026
+ // 0.6721];
+ // Aeq = [3 5 7 9];
+ // beq = 4;
+ // lb = -0.1*ones(4,1);
+ // ub = 2*ones(4,1);
+ // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
+ //
+ // Authors
+ // Harpreet Singh
+
+
+ //To check the number of input and output argument
+ [lhs , rhs] = argn();
+
+ //To check the number of argument given by user
+ if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 10 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [4 6 8 9 10]"), "lsqlin", rhs);
+ error(errmsg)
+ end
+
+ C = varargin(1);
+ d = varargin(2);
+ A = varargin(3);
+ b = varargin(4);
+ nbVar = size(C,2);
+
+ if ( rhs<5 ) then
+ Aeq = []
+ beq = []
+ else
+ Aeq = varargin(5);
+ beq = varargin(6);
+ end
+
+ if ( rhs<7 ) then
+ LB = repmat(-%inf,nbVar,1);
+ UB = repmat(%inf,nbVar,1);
+ else
+ LB = varargin(7);
+ UB = varargin(8);
+ end
+
+
+ if ( rhs<9 | size(varargin(9)) ==0 ) then
+ x0 = repmat(0,nbVar,1)
+ else
+ x0 = varargin(9);
+ end
+
+ if ( rhs<10 | size(varargin(10)) ==0 ) then
+ param = list();
+ else
+ param =varargin(10);
+ end
+
+ if (size(LB,2)==0) then
+ LB = repmat(-%inf,nbVar,1);
+ end
+
+ if (size(UB,2)==0) then
+ UB = repmat(%inf,nbVar,1);
+ end
+
+ if (type(param) ~= 15) then
+ errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin");
+ error(errmsg);
+ end
+
+
+ if (modulo(size(param),2)) then
+ errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin");
+ error(errmsg);
+ end
+
+ options = list( "MaxIter" , [3000], ...
+ "CpuTime" , [600] ...
+ );
+
+ for i = 1:(size(param))/2
+
+ select param(2*i-1)
+ case "MaxIter" then
+ options(2*i) = param(2*i);
+ case "CpuTime" then
+ options(2*i) = param(2*i);
+ else
+ errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
+ error(errmsg)
+ end
+ end
+
+ nbConInEq = size(A,1);
+ nbConEq = size(Aeq,1);
+
+ // Check if the user gives row vector
+ // and Changing it to a column matrix
+
+
+ if (size(d,2)== [nbVar]) then
+ d=d';
+ end
+
+ if (size(LB,2)== [nbVar]) then
+ LB = LB';
+ end
+
+ if (size(UB,2)== [nbVar]) then
+ UB = UB';
+ end
+
+ if (size(b,2)==nbConInEq) then
+ b = b';
+ end
+
+ if (size(beq,2)== nbConEq) then
+ beq = beq';
+ end
+
+ if (size(x0,2)== [nbVar]) then
+ x0=x0';
+ end
+
+ //Check the size of f which should equal to the number of variable
+ if ( size(d,1) ~= size(C,1)) then
+ errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of inequality constraint which should be equal to the number of variables
+ if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
+ errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of d"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of equality constraint which should be equal to the number of variables
+ if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
+ errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of d"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of Lower Bound which should be equal to the number of variables
+ if ( size(LB,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of Upper Bound which should equal to the number of variables
+ if ( size(UB,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of constraints of Lower Bound which should equal to the number of constraints
+ if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
+ errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elementsof b"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of constraints of Upper Bound which should equal to the number of constraints
+ if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
+ errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of initial of variables which should equal to the number of variables
+ if ( size(x0,1) ~= nbVar) then
+ warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "lsqlin");
+ warning(warnmsg);
+ end
+
+ //Check if the user gives a matrix instead of a vector
+
+ if ((size(d,1)~=1)& (size(d,2)~=1)) then
+ errmsg = msprintf(gettext("%s: d should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+
+ if (size(LB,1)~=1)& (size(LB,2)~=1) then
+ errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+
+ if (size(UB,1)~=1)& (size(UB,2)~=1) then
+ errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+
+ if (nbConInEq) then
+ if ((size(b,1)~=1)& (size(b,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+ end
+
+ if (nbConEq) then
+ if (size(beq,1)~=1)& (size(beq,2)~=1) then
+ errmsg = msprintf(gettext("%s: Constraint should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+ end
+
+ for i = 1:nbConInEq
+ if (b(i) == -%inf)
+ errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "qpipoptmat");
+ error(errmsg);
+ end
+ end
+
+ for i = 1:nbConEq
+ if (beq(i) == -%inf)
+ errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "qpipoptmat");
+ error(errmsg);
+ end
+ end
+
+ //Converting it into Quadratic Programming Problem
+
+ Q = C'*C;
+ p = [-C'*d]';
+ op_add = d'*d;
+ LB = LB';
+ UB = UB';
+ x0 = x0';
+ conMatrix = [Aeq;A];
+ nbCon = size(conMatrix,1);
+ conLB = [beq; repmat(-%inf,nbConInEq,1)]';
+ conUB = [beq;b]' ;
+ [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options);
+
+ xopt = xopt';
+ residual = C*xopt-d;
+ resnorm = residual'*residual;
+ exitflag = status;
+ output = struct("Iterations" , []);
+ output.Iterations = iter;
+ lambda = struct("lower" , [], ..
+ "upper" , [], ..
+ "constraint" , []);
+
+ lambda.lower = Zl;
+ lambda.upper = Zu;
+ lambda.constraint = lmbda;
+
+ select status
+ case 0 then
+ printf("\nOptimal Solution Found.\n");
+ case 1 then
+ printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
+ case 2 then
+ printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
+ case 3 then
+ printf("\nStop at Tiny Step\n");
+ case 4 then
+ printf("\nSolved To Acceptable Level\n");
+ case 5 then
+ printf("\nConverged to a point of local infeasibility.\n");
+ case 6 then
+ printf("\nStopping optimization at current point as requested by user.\n");
+ case 7 then
+ printf("\nFeasible point for square problem found.\n");
+ case 8 then
+ printf("\nIterates diverging; problem might be unbounded.\n");
+ case 9 then
+ printf("\nRestoration Failed!\n");
+ case 10 then
+ printf("\nError in step computation (regularization becomes too large?)!\n");
+ case 12 then
+ printf("\nProblem has too few degrees of freedom.\n");
+ case 13 then
+ printf("\nInvalid option thrown back by IPOpt\n");
+ case 14 then
+ printf("\nNot enough memory.\n");
+ case 15 then
+ printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.\n");
+ else
+ printf("\nInvalid status returned. Notify the Toolbox authors\n");
+ break;
+ end
+
+endfunction