summaryrefslogtreecommitdiff
path: root/macros/fminunc.sci
diff options
context:
space:
mode:
Diffstat (limited to 'macros/fminunc.sci')
-rw-r--r--macros/fminunc.sci427
1 files changed, 427 insertions, 0 deletions
diff --git a/macros/fminunc.sci b/macros/fminunc.sci
new file mode 100644
index 0000000..07fa92a
--- /dev/null
+++ b/macros/fminunc.sci
@@ -0,0 +1,427 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+// Author: R.Vidyadhar & Vignesh Kannan
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+function [xopt,fopt,exitflag,output,gradient,hessian] = fminunc (varargin)
+ // Solves a multi-variable unconstrainted optimization problem
+ //
+ // Calling Sequence
+ // xopt = fminunc(f,x0)
+ // xopt = fminunc(f,x0,options)
+ // [xopt,fopt] = fminunc(.....)
+ // [xopt,fopt,exitflag]= fminunc(.....)
+ // [xopt,fopt,exitflag,output]= fminunc(.....)
+ // [xopt,fopt,exitflag,output,gradient]=fminunc(.....)
+ // [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(.....)
+ //
+ // Parameters
+ // f : a function, representing the objective function of the problem
+ // x0 : a vector of doubles, containing the starting of variables.
+ // options: a list, containing the option for user to specify. See below for details.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a scalar of double, the function value at x.
+ // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+ // output : a structure, containing the information about the optimization. See below for details.
+ // gradient : a vector of doubles, containing the the gradient of the solution.
+ // hessian : a matrix of doubles, containing the the hessian of the solution.
+ //
+ // Description
+ // Search the minimum of an unconstrained optimization problem specified by :
+ // Find the minimum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & f(x)\\
+ // \end{eqnarray}
+ // </latex>
+ //
+ // The routine calls Ipopt for solving the Un-constrained Optimization problem, Ipopt is a library written in C++.
+ //
+ // The options allows the user to set various parameters of the Optimization problem.
+ // It should be defined as type "list" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "Gradient", ---, "Hessian", ---);</listitem>
+ // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
+ // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
+ // <listitem>Gradient : a function, representing the gradient function of the Objective in Vector Form.</listitem>
+ // <listitem>Hessian : a function, representing the hessian function of the Objective in Symmetric Matrix Form.</listitem>
+ // <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
+ // </itemizedlist>
+ //
+ // The exitflag allows to know the status of the optimization which is given back by Ipopt.
+ // <itemizedlist>
+ // <listitem>exitflag=0 : Optimal Solution Found </listitem>
+ // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
+ // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
+ // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+ // </itemizedlist>
+ //
+ // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+ //
+ // The output data structure contains detailed informations about the optimization process.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>output.Iterations: The number of iterations performed during the search</listitem>
+ // <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
+ // <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
+ // <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
+ // </itemizedlist>
+ //
+ // Examples
+ // //Find x in R^2 such that it minimizes the Rosenbrock function
+ // //f = 100*(x2 - x1^2)^2 + (1-x1)^2
+ // //Objective function to be minimised
+ // function y= f(x)
+ // y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
+ // endfunction
+ // //Starting point
+ // x0=[-1,2];
+ // //Gradient of objective function
+ // function y= fGrad(x)
+ // y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)];
+ // endfunction
+ // //Hessian of Objective Function
+ // function y= fHess(x)
+ // y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ];
+ // endfunction
+ // //Options
+ // options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
+ // //Calling Ipopt
+ // [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //Find x in R^2 such that the below function is minimum
+ // //f = x1^2 + x2^2
+ // //Objective function to be minimised
+ // function y= f(x)
+ // y= x(1)^2 + x(2)^2;
+ // endfunction
+ // //Starting point
+ // x0=[2,1];
+ // //Calling Ipopt
+ // [xopt,fopt]=fminunc(f,x0)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //The below problem is an unbounded problem:
+ // //Find x in R^2 such that the below function is minimum
+ // //f = - x1^2 - x2^2
+ // //Objective function to be minimised
+ // function y= f(x)
+ // y= -x(1)^2 - x(2)^2;
+ // endfunction
+ // //Starting point
+ // x0=[2,1];
+ // //Gradient of objective function
+ // function y= fGrad(x)
+ // y= [-2*x(1),-2*x(2)];
+ // endfunction
+ // //Hessian of Objective Function
+ // function y= fHess(x)
+ // y= [-2,0;0,-2];
+ // endfunction
+ // //Options
+ // options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
+ // //Calling Ipopt
+ // [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
+ // Authors
+ // R.Vidyadhar , Vignesh Kannan
+
+
+ //To check the number of input and output arguments
+ [lhs , rhs] = argn();
+
+ //To check the number of arguments given by the user
+ if ( rhs<2 | rhs>5 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2 or 5"), "fminunc", rhs);
+ error(errmsg)
+ end
+
+ //Storing the 1st and 2nd Input Parameters
+ fun = varargin(1);
+ x0 = varargin(2);
+
+ //To check whether the 1st Input argument(f) is a function or not
+ if (type(f) ~= 13 & type(f) ~= 11) then
+ errmsg = msprintf(gettext("%s: Expected function for Objective "), "fminunc");
+ error(errmsg);
+ end
+
+ //To check whether the 2nd Input argument(x0) is a vector/scalar
+ if (type(x0) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Starting Point"), "fminunc");
+ error(errmsg);
+ end
+
+ //To check and convert the 2nd Input argument(x0) to a row vector
+ if((size(x0,1)~=1) & (size(x0,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Expected Row Vector or Column Vector for x0 (Initial Value) "), "fminunc", rhs);
+ error(errmsg);
+ else
+ if(size(x0,2)==1) then
+ x0=x0'; //Converting x0 to a row vector, if it is a column vector
+ else
+ x0=x0; //Retaining the same, if it is already a row vector
+ end
+ s=size(x0);
+ end
+
+
+ //To check the match between f (1st Parameter) and x0 (2nd Parameter)
+ if(execstr('init=fun(x0)','errcatch')==21) then
+ errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fminunc");
+ error(errmsg);
+ end
+
+ //Converting the User defined Objective function into Required form (Error Detectable)
+ function [y,check] = f(x)
+ if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27)
+ y=0;
+ check=1;
+ else
+ y=fun(x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+
+ //To check whether options has been entered by user
+ if ( rhs<3 ) then
+ param = list();
+ else
+ param =varargin(3); //Storing the 3rd Input Parameter in an intermediate list named 'param'
+
+ end
+
+ //If options has been entered, then check its type for 'list'
+ if (type(param) ~= 15) then
+ errmsg = msprintf(gettext("%s: 3rd Input parameter should be a list (ie. Options) "), "fminunc");
+ error(errmsg);
+ end
+
+ //If options has been entered, then check whether an even number of entires has been entered
+ if (modulo(size(param),2)) then
+ errmsg = msprintf(gettext("%s: Size of parameters should be even"), "fminunc");
+ error(errmsg);
+ end
+
+ //Defining a function to calculate Gradient or Hessian if the respective user entry is OFF
+ function [y,check]=gradhess(x,t)
+ if t==1 then //To return Gradient
+ if(execstr('y=numderivative(fun,x)','errcatch')==10000)
+ y=0;
+ check=1;
+ else
+ y=numderivative(fun,x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ else //To return Hessian
+ if(execstr('[grad,y]=numderivative(fun,x)','errcatch')==10000)
+ y=0;
+ check=1;
+ else
+ [grad,y]=numderivative(fun,x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ end
+ endfunction
+
+ //To set default values for options, if user doesn't enter options
+ options = list("MaxIter", [3000], "CpuTime", [600]);
+
+ //Flags to check whether Gradient is "ON"/"OFF" and Hessian is "ON"/"OFF"
+ flag1=0;
+ flag2=0;
+ fGrad=[];
+ fGrad1=[];
+ fHess=[];
+ fHess1=[];
+
+ //To check the user entry for options and store it
+ for i = 1:(size(param))/2
+ select param(2*i-1)
+ case "MaxIter" then
+ options(2*i) = param(2*i); //Setting the maximum number of iterations as per user entry
+ case "CpuTime" then
+ options(2*i) = param(2*i); //Setting the maximum CPU time as per user entry
+ case "Gradient" then
+ flag1 = 1;
+ fGrad = param(2*i);
+ case "Hessian" then
+ flag2 = 1;
+ fHess = param(2*i);
+ else
+ errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fminbnd", param(2*i-1));
+ error(errmsg)
+ end
+ end
+
+
+ //To check for correct input of Gradient and Hessian functions from the user
+ if (flag1==1) then
+ if (type(fGrad) ~= 13 & type(fGrad) ~= 11) then
+ errmsg = msprintf(gettext("%s: Expected function for Gradient of Objective"), "fminunc");
+ error(errmsg);
+ end
+
+ if(execstr('samplefGrad=fGrad(x0)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Gradient function of Objective and x0 did not match"), "fminunc");
+ error(errmsg);
+ end
+
+ samplefGrad=fGrad(x0);
+
+ if (size(samplefGrad,1)==s(2) & size(samplefGrad,2)==1) then
+ elseif (size(samplefGrad,1)==1 & size(samplefGrad,2)==s(2)) then
+ elseif (size(samplefGrad,1)~=1 & size(samplefGrad,2)~=1) then
+ errmsg = msprintf(gettext("%s: Wrong Input for Objective Gradient function(3rd Parameter)---->Row Vector function is Expected"), "fminunc");
+ error(errmsg);
+ end
+
+ function [y,check] = fGrad1(x)
+ if(execstr('y=fGrad(x)','errcatch')==32 | execstr('y=fGrad(x)','errcatch')==27)
+ y = 0;
+ check=1;
+ else
+ y=fGrad(x);
+ if (isreal(y)==%F) then
+ y = 0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+ end
+ if (flag2==1) then
+ if (type(fHess) ~= 13 & type(fHess) ~= 11) then
+ errmsg = msprintf(gettext("%s: Expected function for Hessian of Objective"), "fminunc");
+ error(errmsg);
+ end
+
+ if(execstr('samplefHess=fHess(x0)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Hessian function of Objective and x0 did not match"), "fminunc");
+ error(errmsg);
+ end
+
+ samplefHess=fHess(x0);
+
+ if(size(samplefHess,1)~=s(2) | size(samplefHess,2)~=s(2)) then
+ errmsg = msprintf(gettext("%s: Wrong Input for Objective Hessian function(3rd Parameter)---->Symmetric Matrix function is Expected "), "fminunc");
+ error(errmsg);
+ end
+
+ function [y,check] = fHess1(x)
+ if(execstr('y=fHess(x)','errcatch')==32 | execstr('y=fHess(x)','errcatch')==27)
+ y = 0;
+ check=1;
+ else
+ y=fHess(x);
+ if (isreal(y)==%F) then
+ y = 0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+ end
+
+ //Calling the Ipopt function for solving the above problem
+ [xopt,fopt,status,iter,cpu,obj_eval,dual,gradient, hessian1] = solveminuncp(f,gradhess,flag1,fGrad1,flag2,fHess1,x0,options);
+
+ //Calculating the values for output
+ xopt = xopt';
+ exitflag = status;
+ output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[]);
+ output.Iterations = iter;
+ output.Cpu_Time = cpu;
+ output.Objective_Evaluation = obj_eval;
+ output.Dual_Infeasibility = dual;
+
+ //Converting hessian of order (1 x (numberOfVariables)^2) received from Ipopt to order (numberOfVariables x numberOfVariables)
+ s=size(gradient)
+ for i =1:s(2)
+ for j =1:s(2)
+ hessian(i,j)= hessian1(j+((i-1)*s(2)))
+ end
+ end
+
+
+ //In the cases of the problem not being solved, return NULL to the output matrices
+ if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then
+ xopt=[]
+ fopt=[]
+ output = struct("Iterations", [],"Cpu_Time",[]);
+ output.Iterations = iter;
+ output.Cpu_Time = cpu;
+ gradient=[]
+ hessian=[]
+ end
+
+
+ //To print output message
+ select status
+
+ case 0 then
+ printf("\nOptimal Solution Found.\n");
+ case 1 then
+ printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
+ case 2 then
+ printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
+ case 3 then
+ printf("\nStop at Tiny Step\n");
+ case 4 then
+ printf("\nSolved To Acceptable Level\n");
+ case 5 then
+ printf("\nConverged to a point of local infeasibility.\n");
+ case 6 then
+ printf("\nStopping optimization at current point as requested by user.\n");
+ case 7 then
+ printf("\nFeasible point for square problem found.\n");
+ case 8 then
+ printf("\nIterates diverging; problem might be unbounded.\n");
+ case 9 then
+ printf("\nRestoration Failed!\n");
+ case 10 then
+ printf("\nError in step computation (regularization becomes too large?)!\n");
+ case 12 then
+ printf("\nProblem has too few degrees of freedom.\n");
+ case 13 then
+ printf("\nInvalid option thrown back by Ipopt\n");
+ case 14 then
+ printf("\nNot enough memory.\n");
+ case 15 then
+ printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
+ else
+ printf("\nInvalid status returned. Notify the Toolbox authors\n");
+ break;
+ end
+
+
+endfunction