summaryrefslogtreecommitdiff
path: root/help/en_US/qpipopt_mat.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/qpipopt_mat.xml')
-rw-r--r--help/en_US/qpipopt_mat.xml142
1 files changed, 142 insertions, 0 deletions
diff --git a/help/en_US/qpipopt_mat.xml b/help/en_US/qpipopt_mat.xml
new file mode 100644
index 0000000..7dec2b1
--- /dev/null
+++ b/help/en_US/qpipopt_mat.xml
@@ -0,0 +1,142 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from qpipopt_mat.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="qpipopt_mat" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>qpipopt_mat</refname>
+ <refpurpose>Solves a linear quadratic problem.</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = qpipopt_mat(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
+ x = qpipopt_mat(H,f)
+ x = qpipopt_mat(H,f,A,b)
+ x = qpipopt_mat(H,f,A,b,Aeq,beq)
+ x = qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
+ [xopt,fopt,exitflag,output,lamda] = qpipopt_mat( ... )
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Parameters</title>
+ <variablelist>
+ <varlistentry><term>H :</term>
+ <listitem><para> a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
+ <varlistentry><term>f :</term>
+ <listitem><para> a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
+ <varlistentry><term>A :</term>
+ <listitem><para> a m x n matrix of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
+ <varlistentry><term>b :</term>
+ <listitem><para> a column vector of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
+ <varlistentry><term>Aeq :</term>
+ <listitem><para> a meq x n matrix of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
+ <varlistentry><term>beq :</term>
+ <listitem><para> a vector of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
+ <varlistentry><term>LB :</term>
+ <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry>
+ <varlistentry><term>UB :</term>
+ <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> a nx1 matrix of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> a 1x1 matrix of doubles, the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
+ <varlistentry><term>output :</term>
+ <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
+ <varlistentry><term>lambda :</term>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a constrained linear quadratic optimization problem specified by :
+find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; 1/2*x'*H*x + f'*x \\
+&amp; \text{subject to} &amp; A.x \leq b \\
+&amp; &amp; Aeq.x \leq beq \\
+&amp; &amp; lb \leq x \leq ub \\
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ </para>
+ <para>
+</para>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R^6 such that:
+
+Aeq= [1,-1,1,0,3,1;
+-1,0,-3,-4,5,6;
+2,5,3,0,1,0];
+beq=[1; 2; 3];
+A= [0,1,0,1,2,-1;
+-1,0,2,1,1,0];
+b = [-1; 2.5];
+lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ub=[10000; 100; 1.5; 100; 100; 1000];
+//and minimize 0.5*x'*Q*x + p'*x with
+f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+[xopt,fopt,exitflag,output,lambda]=qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
+clear H f A b Aeq beq lb ub;
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find the value of x that minimize following function
+// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
+// Subject to:
+// x1 + x2 ≤ 2
+// –x1 + 2x2 ≤ 2
+// 2x1 + x2 ≤ 3
+// 0 ≤ x1, 0 ≤ x2.
+H = [1 -1; -1 2];
+f = [-2; -6];
+A = [1 1; -1 2; 2 1];
+b = [2; 2; 3];
+lb = [0; 0];
+ub = [%inf; %inf];
+[xopt,fopt,exitflag,output,lambda] = qpipopt_mat(H,f,A,b,[],[],lb,ub)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
+ </simplelist>
+</refsection>
+</refentry>