summaryrefslogtreecommitdiff
path: root/help/en_US/intfminbnd.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/intfminbnd.xml')
-rw-r--r--help/en_US/intfminbnd.xml242
1 files changed, 242 insertions, 0 deletions
diff --git a/help/en_US/intfminbnd.xml b/help/en_US/intfminbnd.xml
new file mode 100644
index 0000000..dbc8fa9
--- /dev/null
+++ b/help/en_US/intfminbnd.xml
@@ -0,0 +1,242 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from intfminbnd.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="intfminbnd" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>intfminbnd</refname>
+ <refpurpose>Solves a multi-variable optimization problem on a bounded interval</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = intfminbnd(f,intcon,x1,x2)
+ xopt = intfminbnd(f,intcon,x1,x2,options)
+ [xopt,fopt] = intfminbnd(.....)
+ [xopt,fopt,exitflag]= intfminbnd(.....)
+ [xopt,fopt,exitflag,output]=intfminbnd(.....)
+ [xopt,fopt,exitflag,gradient,hessian]=intfminbnd(.....)
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Input Parameters</title>
+ <variablelist>
+ <varlistentry><term>f :</term>
+ <listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry>
+ <varlistentry><term><latex>x_{1}</latex> :</term>
+ <listitem><para> A vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where n is number of variables. If it is empty it means that the lower bound is <latex>-\infty</latex>.</para></listitem></varlistentry>
+ <varlistentry><term><latex>x_{2}</latex> :</term>
+ <listitem><para> A vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where n is the number of variables. If it is empty it means that the upper bound is <latex>\infty</latex>.</para></listitem></varlistentry>
+ <varlistentry><term>intcon :</term>
+ <listitem><para> A vector of integers, representing the variables that are constrained to be integers.</para></listitem></varlistentry>
+ <varlistentry><term>options :</term>
+ <listitem><para> A list, containing the options for user to specify. See below for details.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+ <refsection>
+<title> Outputs</title>
+ <variablelist>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> A double, containing the the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>gradient :</term>
+ <listitem><para> A vector of doubles, containing the objective's gradient of the solution.</para></listitem></varlistentry>
+ <varlistentry><term>hessian :</term>
+ <listitem><para>A matrix of doubles, containing the Lagrangian's hessian of the solution.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a multi-variable function on bounded interval specified by :
+Find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; f(x)\\
+&amp; \text{Subjected to:}\\ &amp; x_{1} \ &lt; x \ &lt; x_{2} \\
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+intfminbnd calls Bonmin, which is an optimization library written in C++, to solve the bound optimization problem.
+ </para>
+ <para>
+<title>Options</title>
+The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
+ </para>
+ <para>
+options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
+<itemizedlist>
+<listitem>IntegerTolerance : A Scalar, a number with that value of an integer is considered integer.</listitem>
+<listitem>MaxNodes : A Scalar, containing the maximum number of nodes that the solver should search.</listitem>
+<listitem>CpuTime : A scalar, specifying the maximum amount of CPU Time in seconds that the solver should take.</listitem>
+<listitem>AllowableGap : A scalar, that specifies the gap between the computed solution and the the objective value of the best known solution stop, at which the tree search can be stopped.</listitem>
+<listitem>MaxIter : A scalar, specifying the maximum number of iterations that the solver should take.</listitem>
+<listitem>gradobj : A string, to turn on or off the user supplied objective gradient.</listitem>
+<listitem>hessian : A scalar, to turn on or off the user supplied objective hessian.</listitem>
+</itemizedlist>
+ The default values for the various items are given as:
+ </para>
+ <para>
+ options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
+ </para>
+
+ <para>
+The exitflag allows the user to know the status of the optimization which is returned by Bonmin. The values it can take and what they indicate is described below:
+<itemizedlist>
+<listitem> 0 : Optimal Solution Found </listitem>
+<listitem> 1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+<listitem> 2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
+<listitem> 3 : Stop at Tiny Step.</listitem>
+<listitem> 4 : Solved To Acceptable Level.</listitem>
+<listitem> 5 : Converged to a point of local infeasibility.</listitem>
+</itemizedlist>
+ </para>
+ <para>
+For more details on exitflag, see the Bonmin documentation which can be found on http://www.coin-or.org/Bonmin
+ </para>
+ <para>
+</para>
+</refsection>
+<para>
+A few examples displaying the various functionalities of intfminbnd have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
+ </para>
+<refsection>
+ <title>Example</title>
+ <para>
+We start with a simple objective function. Find x in R^6 such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = sin(x_{1}) + sin(x_{2}) + sin(x_{3}) + sin(x_{4}) + sin(x_{5}) + sin(x_{6})
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+\hspace{70pt} &amp;-2 &amp;\leq x{1}, x{2}, x{3}, x{4}, x{5}, x{6} &amp;\leq 2\\
+\end{eqnarray}\\
+\text{With integer constraints as: }\\
+\begin{eqnarray}
+\begin{array}{ccc}
+[2 &amp; 3 &amp; 4] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+<para>
+</para>
+ <programlisting role="example"><![CDATA[
+//Example 1:
+//Objective function to be minimised
+function y=f(x)
+y=0
+for i =1:6
+y=y+sin(x(i));
+end
+endfunction
+//Variable bounds
+x1 = [-2, -2, -2, -2, -2, -2];
+x2 = [2, 2, 2, 2, 2, 2];
+intcon = [2 3 4]
+[x,fval] =intfminbnd(f ,intcon, x1, x2)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+ Here we solve a bounded objective function in R^6. We use this function to illustrate how we can further enhance the functionality of fminbnd by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 2. We also set solver parameters using the options.
+ <programlisting role="example"><![CDATA[
+//Example 2:
+//Objective function to be minimised
+function y=f(x)
+y=0
+for i =1:6
+y=y+sin(x(i));
+end
+endfunction
+//Variable bounds
+x1 = [-2, -2, -2, -2, -2, -2];
+x2 = [2, 2, 2, 2, 2, 2];
+intcon = [2 3 4]
+//Options
+options=list("MaxIter",[1500],"CpuTime", [100])
+[x,fval] =intfminbnd(f ,intcon, x1, x2, options)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+
+<refsection>
+ <title>Example</title>
+ <para>
+ Unbounded Problems: Find x in R^2 such that it minimizes:
+ </para>
+ <para>
+ <latex>
+ \begin{eqnarray}
+f(x) = -((x_{1}-1)^{2}+(x_{2}-1)^{2})
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+-\infty &amp;\leq x_{1} &amp;\leq \infty\\
+-\infty &amp;\leq x_{2} &amp;\leq \infty
+\end{eqnarray}\\
+\text{With integer constraints as: } \\
+\begin{eqnarray}
+\begin{array}{cccccc}
+[1 &amp; 2] \\
+\end{array}
+\end{eqnarray}
+</latex>
+</para>
+<para>
+</para>
+ <programlisting role="example"><![CDATA[
+///Example 3: Unbounded problem:
+//Objective function to be minimised
+function y=f(x)
+y=-((x(1)-1)^2+(x(2)-1)^2);
+endfunction
+//Variable bounds
+x1 = [-%inf , -%inf];
+x2 = [ %inf , %inf];
+//Options
+options=list("MaxIter",[1500],"CpuTime", [100]);
+intcon = [1 2];
+[x,fval,exitflag,output,lambda] =intfminbnd(f,intcon, x1, x2, options)
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>Harpreet Singh</member>
+ </simplelist>
+</refsection>
+</refentry>