summaryrefslogtreecommitdiff
path: root/help/en_US/fminunc.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/fminunc.xml')
-rw-r--r--help/en_US/fminunc.xml181
1 files changed, 118 insertions, 63 deletions
diff --git a/help/en_US/fminunc.xml b/help/en_US/fminunc.xml
index e5a46c3..30fc9eb 100644
--- a/help/en_US/fminunc.xml
+++ b/help/en_US/fminunc.xml
@@ -36,26 +36,31 @@
</refsynopsisdiv>
<refsection>
- <title>Parameters</title>
+ <title>Input Parameters</title>
<variablelist>
<varlistentry><term>f :</term>
- <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
+ <listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
- <listitem><para> a vector of doubles, containing the starting of variables.</para></listitem></varlistentry>
- <varlistentry><term>options:</term>
- <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
+ <listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables.</para></listitem></varlistentry>
+ <varlistentry><term>options :</term>
+ <listitem><para> A list, containing the options for user to specify. See below for details.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+ <refsection>
+<title> Outputs</title>
+ <variablelist>
<varlistentry><term>xopt :</term>
- <listitem><para> a vector of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
- <listitem><para> a scalar of double, the function value at x.</para></listitem></varlistentry>
+ <listitem><para> A double, containing the the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
- <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
- <varlistentry><term>output :</term>
- <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
+ <listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>output :</term>
+ <listitem><para> A structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
<varlistentry><term>gradient :</term>
- <listitem><para> a vector of doubles, containing the the gradient of the solution.</para></listitem></varlistentry>
+ <listitem><para> A vector of doubles, containing the objective's gradient of the solution.</para></listitem></varlistentry>
<varlistentry><term>hessian :</term>
- <listitem><para> a matrix of doubles, containing the the hessian of the solution.</para></listitem></varlistentry>
+ <listitem><para> A matrix of doubles, containing the lagrangian's hessian of the solution.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -63,6 +68,8 @@
<title>Description</title>
<para>
Search the minimum of an unconstrained optimization problem specified by :
+</para>
+ <para>
Find the minimum of f(x) such that
</para>
<para>
@@ -74,101 +81,149 @@ Find the minimum of f(x) such that
</latex>
</para>
<para>
-The routine calls Ipopt for solving the Un-constrained Optimization problem, Ipopt is a library written in C++.
+Fminunc calls Ipopt which is an optimization library written in C++, to solve the unconstrained optimization problem.
+ </para>
+ <para>
+ <title>Options</title>
+The options allow the user to set various parameters of the optimization problem. The syntax for the options is given by:
+ </para>
+ <para>
+options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "Hessian", ---, "GradCon", ---);
</para>
<para>
-The options allows the user to set various parameters of the Optimization problem.
-It should be defined as type "list" and contains the following fields.
<itemizedlist>
-<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "Gradient", ---, "Hessian", ---);</listitem>
-<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
-<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
-<listitem>Gradient : a function, representing the gradient function of the Objective in Vector Form.</listitem>
-<listitem>Hessian : a function, representing the hessian function of the Objective in Symmetric Matrix Form.</listitem>
-<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
+<listitem>MaxIter : A Scalar, specifying the Maximum Number of Iterations that the solver should take.</listitem>
+<listitem>CpuTime : A Scalar, specifying the Maximum amount of CPU Time in seconds that the solver should take.</listitem>
+<listitem>Gradient: A function, representing the gradient function of the objective in Vector Form.</listitem>
+<listitem>Hessian : A function, representing the hessian function of the lagrange in the form of a Symmetric Matrix with input parameters as x, objective factor and lambda. Refer to Example 5 for definition of lagrangian hessian function.</listitem>
</itemizedlist>
+The default values for the various items are given as:
</para>
<para>
-The exitflag allows to know the status of the optimization which is given back by Ipopt.
+options = list("MaxIter", [3000], "CpuTime", [600]);
+ </para>
+ <para>
+The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<itemizedlist>
-<listitem>exitflag=0 : Optimal Solution Found </listitem>
-<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
-<listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
-<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
-<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
-<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+<listitem> 0 : Optimal Solution Found </listitem>
+<listitem> 1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+<listitem> 2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
+<listitem> 3 : Stop at Tiny Step.</listitem>
+<listitem> 4 : Solved To Acceptable Level.</listitem>
+<listitem> 5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
</para>
<para>
-For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+For more details on exitflag, see the Ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/
</para>
<para>
-The output data structure contains detailed informations about the optimization process.
-It has type "struct" and contains the following fields.
+The output data structure contains detailed information about the optimization process.
+It is of type "struct" and contains the following fields.
<itemizedlist>
-<listitem>output.Iterations: The number of iterations performed during the search</listitem>
-<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
-<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
-<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
-<listitem>output.Message: The output message for the problem</listitem>
+<listitem>output.Iterations: The number of iterations performed.</listitem>
+<listitem>output.Cpu_Time : The total cpu-time taken.</listitem>
+<listitem>output.Objective_Evaluation: The number of objective evaluations performed.</listitem>
+<listitem>output.Dual_Infeasibility : The Dual Infeasiblity of the final soution.</listitem>
+<listitem>output.Message: The output message for the problem.</listitem>
</itemizedlist>
</para>
<para>
</para>
</refsection>
+ <para>
+A few examples displaying the various functionalities of fminunc have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
+ </para>
+
<refsection>
- <title>Examples</title>
+ <title>Example</title>
+<para>
+We begin with the minimization of a simple non-linear function.
+</para>
+ <para>
+Find x in R^2 such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = x_{1}^{2} + x_{2}^{2}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+
+</para>
<programlisting role="example"><![CDATA[
-//Find x in R^2 such that it minimizes the Rosenbrock function
-//f = 100*(x2 - x1^2)^2 + (1-x1)^2
+//Example 1: Simple non-linear function.
//Objective function to be minimised
function y= f(x)
-y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
+y= x(1)^2 + x(2)^2;
endfunction
//Starting point
-x0=[-1,2];
-//Gradient of objective function
-function y= fGrad(x)
-y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)];
-endfunction
-//Hessian of Objective Function
-function y= fHess(x)
-y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ];
-endfunction
-//Options
-options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
+x0=[2,1];
//Calling Ipopt
-[xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
+[xopt,fopt]=fminunc(f,x0)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
- <title>Examples</title>
+ <title>Example</title>
+<para>
+We now look at the Rosenbrock function, a non-convex performance test problem for optimization routines. We use this example to illustrate how we can enhance the functionality of fminunc by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 2. We also set solver parameters using the options.
+</para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = 100\boldsymbol{\cdot} (x_{2} - x_{1}^{2})^{2} + (1-x_{1})^{2}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+
+</para>
<programlisting role="example"><![CDATA[
-//Find x in R^2 such that the below function is minimum
-//f = x1^2 + x2^2
+//Example 2: The Rosenbrock function.
//Objective function to be minimised
function y= f(x)
-y= x(1)^2 + x(2)^2;
+y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
endfunction
//Starting point
-x0=[2,1];
+x0=[-1,2];
+//Gradient of objective function
+function y= fGrad(x)
+y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)];
+endfunction
+//Hessian of Objective Function
+function y= fHess(x)
+y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", fHess);
//Calling Ipopt
-[xopt,fopt]=fminunc(f,x0)
+[xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
- <title>Examples</title>
+ <title>Example</title>
+<para>
+Unbounded Problems: Find x in R^2 such that it minimizes:
+</para>
+ <para>
+<latex>
+\begin{eqnarray}
+f(x) = -x_{1}^{2} - x_{2}^{2}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
<programlisting role="example"><![CDATA[
-//The below problem is an unbounded problem:
-//Find x in R^2 such that the below function is minimum
-//f = - x1^2 - x2^2
+//Example 3: Unbounded objective function.
//Objective function to be minimised
function y= f(x)
y= -x(1)^2 - x(2)^2;
@@ -184,7 +239,7 @@ function y= fHess(x)
y= [-2,0;0,-2];
endfunction
//Options
-options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", fHess);
//Calling Ipopt
[xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
]]></programlisting>