summaryrefslogtreecommitdiff
path: root/help/en_US/fmincon.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/fmincon.xml')
-rw-r--r--help/en_US/fmincon.xml334
1 files changed, 334 insertions, 0 deletions
diff --git a/help/en_US/fmincon.xml b/help/en_US/fmincon.xml
new file mode 100644
index 0000000..d8a7c4b
--- /dev/null
+++ b/help/en_US/fmincon.xml
@@ -0,0 +1,334 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from fmincon.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="fmincon" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>fmincon</refname>
+ <refpurpose>Solves a multi-variable constrainted optimization problem</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = fmincon(f,x0,A,b)
+ xopt = fmincon(f,x0,A,b,Aeq,beq)
+ xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub)
+ xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc)
+ xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options)
+ [xopt,fopt] = fmincon(.....)
+ [xopt,fopt,exitflag]= fmincon(.....)
+ [xopt,fopt,exitflag,output]= fmincon(.....)
+ [xopt,fopt,exitflag,output,lambda]=fmincon(.....)
+ [xopt,fopt,exitflag,output,lambda,gradient]=fmincon(.....)
+ [xopt,fopt,exitflag,output,lambda,gradient,hessian]=fmincon(.....)
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Parameters</title>
+ <variablelist>
+ <varlistentry><term>f :</term>
+ <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
+ <varlistentry><term>x0 :</term>
+ <listitem><para> a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry>
+ <varlistentry><term>A :</term>
+ <listitem><para> a matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints</para></listitem></varlistentry>
+ <varlistentry><term>b :</term>
+ <listitem><para> a vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1)</para></listitem></varlistentry>
+ <varlistentry><term>Aeq :</term>
+ <listitem><para> a matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints</para></listitem></varlistentry>
+ <varlistentry><term>beq :</term>
+ <listitem><para> a vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1)</para></listitem></varlistentry>
+ <varlistentry><term>lb :</term>
+ <listitem><para> a vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry>
+ <varlistentry><term>ub :</term>
+ <listitem><para> a vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry>
+ <varlistentry><term>nlc :</term>
+ <listitem><para> a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.</para></listitem></varlistentry>
+ <varlistentry><term>options :</term>
+ <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> a vector of doubles, cointating the computed solution of the optimization problem</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> a scalar of double, containing the the function value at x</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>output :</term>
+ <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>lambda :</term>
+ <listitem><para> a structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>gradient :</term>
+ <listitem><para> a vector of doubles, containing the Objective's gradient of the solution.</para></listitem></varlistentry>
+ <varlistentry><term>hessian :</term>
+ <listitem><para> a matrix of doubles, containing the Lagrangian's hessian of the solution.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a constrained optimization problem specified by :
+Find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; f(x) \\
+&amp; \text{subject to} &amp; A*x \leq b \\
+&amp; &amp; Aeq*x \ = beq\\
+&amp; &amp; c(x) \leq 0\\
+&amp; &amp; ceq(x) \ = 0\\
+&amp; &amp; lb \leq x \leq ub \\
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
+ </para>
+ <para>
+The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+<itemizedlist>
+<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "Hessian", ---, "GradCon", ---);</listitem>
+<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
+<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
+<listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
+<listitem>Hessian : a function, representing the hessian function of the Lagrange in Symmetric Matrix Form with Input parameters x, Objective factor and Lambda. Refer Example for definition of Lagrangian Hessian function.</listitem>
+<listitem>GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 &amp; m3 are number of non-linear inequality and equality constraints respectively.</listitem>
+<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
+</itemizedlist>
+ </para>
+ <para>
+The exitflag allows to know the status of the optimization which is given back by Ipopt.
+<itemizedlist>
+<listitem>exitflag=0 : Optimal Solution Found </listitem>
+<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+<listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
+<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
+<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
+<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+</itemizedlist>
+ </para>
+ <para>
+For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+ </para>
+ <para>
+The output data structure contains detailed informations about the optimization process.
+It has type "struct" and contains the following fields.
+<itemizedlist>
+<listitem>output.Iterations: The number of iterations performed during the search</listitem>
+<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
+<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
+<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
+</itemizedlist>
+ </para>
+ <para>
+The lambda data structure contains the Lagrange multipliers at the end
+of optimization. In the current version the values are returned only when the the solution is optimal.
+It has type "struct" and contains the following fields.
+<itemizedlist>
+<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
+<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
+<listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
+<listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
+<listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
+<listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
+</itemizedlist>
+ </para>
+ <para>
+</para>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R^2 such that it minimizes:
+//f(x)= -x1 -x2/3
+//x0=[0,0]
+//constraint-1 (c1): x1 + x2 <= 2
+//constraint-2 (c2): x1 + x2/4 <= 1
+//constraint-3 (c3): x1 - x2 <= 2
+//constraint-4 (c4): -x1/4 - x2 <= 1
+//constraint-5 (c5): -x1 - x2 <= -1
+//constraint-6 (c6): -x1 + x2 <= 2
+//constraint-7 (c7): x1 + x2 = 2
+//Objective function to be minimised
+function y=f(x)
+y=-x(1)-x(2)/3;
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0 , 0];
+A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
+b=[2;1;2;1;-1;2];
+Aeq=[1,1];
+beq=[2];
+lb=[];
+ub=[];
+nlc=[];
+//Gradient of objective function
+function y= fGrad(x)
+y= [-1,-1/3];
+endfunction
+//Hessian of lagrangian
+function y= lHess(x,obj,lambda)
+y= obj*[0,0;0,0]
+endfunction
+//Options
+options=list("GradObj", fGrad, "Hessian", lHess);
+//Calling Ipopt
+[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R^3 such that it minimizes:
+//f(x)= x1*x2 + x2*x3
+//x0=[0.1 , 0.1 , 0.1]
+//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
+//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
+//Objective function to be minimised
+function y=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1 , 0.1 , 0.1];
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[];
+//Nonlinear constraints
+function [c,ceq]=nlc(x)
+c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
+ceq = [];
+endfunction
+//Gradient of objective function
+function y= fGrad(x)
+y= [x(2),x(1)+x(3),x(2)];
+endfunction
+//Hessian of the Lagrange Function
+function y= lHess(x,obj,lambda)
+y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2]
+endfunction
+//Gradient of Non-Linear Constraints
+function [cg,ceqg] = cGrad(x)
+cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
+ceqg=[];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
+//Calling Ipopt
+[x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//The below problem is an unbounded problem:
+//Find x in R^3 such that it minimizes:
+//f(x)= -(x1^2 + x2^2 + x3^2)
+//x0=[0.1 , 0.1 , 0.1]
+// x1 <= 0
+// x2 <= 0
+// x3 <= 0
+//Objective function to be minimised
+function y=f(x)
+y=-(x(1)^2+x(2)^2+x(3)^2);
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1 , 0.1 , 0.1];
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[0,0,0];
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500]);
+//Calling Ipopt
+[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//The below problem is an infeasible problem:
+//Find x in R^3 such that in minimizes:
+//f(x)=x1*x2 + x2*x3
+//x0=[1,1,1]
+//constraint-1 (c1): x1^2 <= 1
+//constraint-2 (c2): x1^2 + x2^2 <= 1
+//constraint-3 (c3): x3^2 <= 1
+//constraint-4 (c4): x1^3 = 0.5
+//constraint-5 (c5): x2^2 + x3^2 = 0.75
+// 0 <= x1 <=0.6
+// 0.2 <= x2 <= inf
+// -inf <= x3 <= 1
+//Objective function to be minimised
+function y=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[1,1,1];
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[0 0.2,-%inf];
+ub=[0.6 %inf,1];
+//Nonlinear constraints
+function [c,ceq]=nlc(x)
+c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
+ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
+endfunction
+//Gradient of objective function
+function y= fGrad(x)
+y= [x(2),x(1)+x(3),x(2)];
+endfunction
+//Hessian of the Lagrange Function
+function y= lHess(x,obj,lambda)
+y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1 ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2];
+endfunction
+//Gradient of Non-Linear Constraints
+function [cg,ceqg] = cGrad(x)
+cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
+ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
+//Calling Ipopt
+[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>R.Vidyadhar , Vignesh Kannan</member>
+ </simplelist>
+</refsection>
+</refentry>