diff options
Diffstat (limited to 'help/en_US/fmincon.xml')
-rw-r--r-- | help/en_US/fmincon.xml | 334 |
1 files changed, 334 insertions, 0 deletions
diff --git a/help/en_US/fmincon.xml b/help/en_US/fmincon.xml new file mode 100644 index 0000000..d8a7c4b --- /dev/null +++ b/help/en_US/fmincon.xml @@ -0,0 +1,334 @@ +<?xml version="1.0" encoding="UTF-8"?> + +<!-- + * + * This help file was generated from fmincon.sci using help_from_sci(). + * + --> + +<refentry version="5.0-subset Scilab" xml:id="fmincon" xml:lang="en" + xmlns="http://docbook.org/ns/docbook" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:ns3="http://www.w3.org/1999/xhtml" + xmlns:mml="http://www.w3.org/1998/Math/MathML" + xmlns:scilab="http://www.scilab.org" + xmlns:db="http://docbook.org/ns/docbook"> + + <refnamediv> + <refname>fmincon</refname> + <refpurpose>Solves a multi-variable constrainted optimization problem</refpurpose> + </refnamediv> + + +<refsynopsisdiv> + <title>Calling Sequence</title> + <synopsis> + xopt = fmincon(f,x0,A,b) + xopt = fmincon(f,x0,A,b,Aeq,beq) + xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub) + xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc) + xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options) + [xopt,fopt] = fmincon(.....) + [xopt,fopt,exitflag]= fmincon(.....) + [xopt,fopt,exitflag,output]= fmincon(.....) + [xopt,fopt,exitflag,output,lambda]=fmincon(.....) + [xopt,fopt,exitflag,output,lambda,gradient]=fmincon(.....) + [xopt,fopt,exitflag,output,lambda,gradient,hessian]=fmincon(.....) + + </synopsis> +</refsynopsisdiv> + +<refsection> + <title>Parameters</title> + <variablelist> + <varlistentry><term>f :</term> + <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry> + <varlistentry><term>x0 :</term> + <listitem><para> a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry> + <varlistentry><term>A :</term> + <listitem><para> a matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints</para></listitem></varlistentry> + <varlistentry><term>b :</term> + <listitem><para> a vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1)</para></listitem></varlistentry> + <varlistentry><term>Aeq :</term> + <listitem><para> a matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints</para></listitem></varlistentry> + <varlistentry><term>beq :</term> + <listitem><para> a vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1)</para></listitem></varlistentry> + <varlistentry><term>lb :</term> + <listitem><para> a vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry> + <varlistentry><term>ub :</term> + <listitem><para> a vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry> + <varlistentry><term>nlc :</term> + <listitem><para> a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.</para></listitem></varlistentry> + <varlistentry><term>options :</term> + <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry> + <varlistentry><term>xopt :</term> + <listitem><para> a vector of doubles, cointating the computed solution of the optimization problem</para></listitem></varlistentry> + <varlistentry><term>fopt :</term> + <listitem><para> a scalar of double, containing the the function value at x</para></listitem></varlistentry> + <varlistentry><term>exitflag :</term> + <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry> + <varlistentry><term>output :</term> + <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry> + <varlistentry><term>lambda :</term> + <listitem><para> a structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.</para></listitem></varlistentry> + <varlistentry><term>gradient :</term> + <listitem><para> a vector of doubles, containing the Objective's gradient of the solution.</para></listitem></varlistentry> + <varlistentry><term>hessian :</term> + <listitem><para> a matrix of doubles, containing the Lagrangian's hessian of the solution.</para></listitem></varlistentry> + </variablelist> +</refsection> + +<refsection> + <title>Description</title> + <para> +Search the minimum of a constrained optimization problem specified by : +Find the minimum of f(x) such that + </para> + <para> +<latex> +\begin{eqnarray} +&\mbox{min}_{x} +& f(x) \\ +& \text{subject to} & A*x \leq b \\ +& & Aeq*x \ = beq\\ +& & c(x) \leq 0\\ +& & ceq(x) \ = 0\\ +& & lb \leq x \leq ub \\ +\end{eqnarray} +</latex> + </para> + <para> +The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++. + </para> + <para> +The options allows the user to set various parameters of the Optimization problem. +It should be defined as type "list" and contains the following fields. +<itemizedlist> +<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "Hessian", ---, "GradCon", ---);</listitem> +<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem> +<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem> +<listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem> +<listitem>Hessian : a function, representing the hessian function of the Lagrange in Symmetric Matrix Form with Input parameters x, Objective factor and Lambda. Refer Example for definition of Lagrangian Hessian function.</listitem> +<listitem>GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 & m3 are number of non-linear inequality and equality constraints respectively.</listitem> +<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem> +</itemizedlist> + </para> + <para> +The exitflag allows to know the status of the optimization which is given back by Ipopt. +<itemizedlist> +<listitem>exitflag=0 : Optimal Solution Found </listitem> +<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem> +<listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem> +<listitem>exitflag=3 : Stop at Tiny Step.</listitem> +<listitem>exitflag=4 : Solved To Acceptable Level.</listitem> +<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem> +</itemizedlist> + </para> + <para> +For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/ + </para> + <para> +The output data structure contains detailed informations about the optimization process. +It has type "struct" and contains the following fields. +<itemizedlist> +<listitem>output.Iterations: The number of iterations performed during the search</listitem> +<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem> +<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem> +<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem> +</itemizedlist> + </para> + <para> +The lambda data structure contains the Lagrange multipliers at the end +of optimization. In the current version the values are returned only when the the solution is optimal. +It has type "struct" and contains the following fields. +<itemizedlist> +<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem> +<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem> +<listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem> +<listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem> +<listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem> +<listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem> +</itemizedlist> + </para> + <para> +</para> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +//Find x in R^2 such that it minimizes: +//f(x)= -x1 -x2/3 +//x0=[0,0] +//constraint-1 (c1): x1 + x2 <= 2 +//constraint-2 (c2): x1 + x2/4 <= 1 +//constraint-3 (c3): x1 - x2 <= 2 +//constraint-4 (c4): -x1/4 - x2 <= 1 +//constraint-5 (c5): -x1 - x2 <= -1 +//constraint-6 (c6): -x1 + x2 <= 2 +//constraint-7 (c7): x1 + x2 = 2 +//Objective function to be minimised +function y=f(x) +y=-x(1)-x(2)/3; +endfunction +//Starting point, linear constraints and variable bounds +x0=[0 , 0]; +A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1]; +b=[2;1;2;1;-1;2]; +Aeq=[1,1]; +beq=[2]; +lb=[]; +ub=[]; +nlc=[]; +//Gradient of objective function +function y= fGrad(x) +y= [-1,-1/3]; +endfunction +//Hessian of lagrangian +function y= lHess(x,obj,lambda) +y= obj*[0,0;0,0] +endfunction +//Options +options=list("GradObj", fGrad, "Hessian", lHess); +//Calling Ipopt +[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) + + ]]></programlisting> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +//Find x in R^3 such that it minimizes: +//f(x)= x1*x2 + x2*x3 +//x0=[0.1 , 0.1 , 0.1] +//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2 +//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10 +//Objective function to be minimised +function y=f(x) +y=x(1)*x(2)+x(2)*x(3); +endfunction +//Starting point, linear constraints and variable bounds +x0=[0.1 , 0.1 , 0.1]; +A=[]; +b=[]; +Aeq=[]; +beq=[]; +lb=[]; +ub=[]; +//Nonlinear constraints +function [c,ceq]=nlc(x) +c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10]; +ceq = []; +endfunction +//Gradient of objective function +function y= fGrad(x) +y= [x(2),x(1)+x(3),x(2)]; +endfunction +//Hessian of the Lagrange Function +function y= lHess(x,obj,lambda) +y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2] +endfunction +//Gradient of Non-Linear Constraints +function [cg,ceqg] = cGrad(x) +cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)]; +ceqg=[]; +endfunction +//Options +options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad); +//Calling Ipopt +[x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) + + ]]></programlisting> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +//The below problem is an unbounded problem: +//Find x in R^3 such that it minimizes: +//f(x)= -(x1^2 + x2^2 + x3^2) +//x0=[0.1 , 0.1 , 0.1] +// x1 <= 0 +// x2 <= 0 +// x3 <= 0 +//Objective function to be minimised +function y=f(x) +y=-(x(1)^2+x(2)^2+x(3)^2); +endfunction +//Starting point, linear constraints and variable bounds +x0=[0.1 , 0.1 , 0.1]; +A=[]; +b=[]; +Aeq=[]; +beq=[]; +lb=[]; +ub=[0,0,0]; +//Options +options=list("MaxIter", [1500], "CpuTime", [500]); +//Calling Ipopt +[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options) + + ]]></programlisting> +</refsection> + +<refsection> + <title>Examples</title> + <programlisting role="example"><![CDATA[ +//The below problem is an infeasible problem: +//Find x in R^3 such that in minimizes: +//f(x)=x1*x2 + x2*x3 +//x0=[1,1,1] +//constraint-1 (c1): x1^2 <= 1 +//constraint-2 (c2): x1^2 + x2^2 <= 1 +//constraint-3 (c3): x3^2 <= 1 +//constraint-4 (c4): x1^3 = 0.5 +//constraint-5 (c5): x2^2 + x3^2 = 0.75 +// 0 <= x1 <=0.6 +// 0.2 <= x2 <= inf +// -inf <= x3 <= 1 +//Objective function to be minimised +function y=f(x) +y=x(1)*x(2)+x(2)*x(3); +endfunction +//Starting point, linear constraints and variable bounds +x0=[1,1,1]; +A=[]; +b=[]; +Aeq=[]; +beq=[]; +lb=[0 0.2,-%inf]; +ub=[0.6 %inf,1]; +//Nonlinear constraints +function [c,ceq]=nlc(x) +c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1]; +ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75]; +endfunction +//Gradient of objective function +function y= fGrad(x) +y= [x(2),x(1)+x(3),x(2)]; +endfunction +//Hessian of the Lagrange Function +function y= lHess(x,obj,lambda) +y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1 ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2]; +endfunction +//Gradient of Non-Linear Constraints +function [cg,ceqg] = cGrad(x) +cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)]; +ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)]; +endfunction +//Options +options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad); +//Calling Ipopt +[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options) + ]]></programlisting> +</refsection> + +<refsection> + <title>Authors</title> + <simplelist type="vert"> + <member>R.Vidyadhar , Vignesh Kannan</member> + </simplelist> +</refsection> +</refentry> |