summaryrefslogtreecommitdiff
path: root/help/en_US/fminbnd.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/fminbnd.xml')
-rw-r--r--help/en_US/fminbnd.xml194
1 files changed, 130 insertions, 64 deletions
diff --git a/help/en_US/fminbnd.xml b/help/en_US/fminbnd.xml
index 99d21ea..b71d5cf 100644
--- a/help/en_US/fminbnd.xml
+++ b/help/en_US/fminbnd.xml
@@ -35,26 +35,31 @@
</refsynopsisdiv>
<refsection>
- <title>Parameters</title>
+ <title>Input Parameters</title>
<variablelist>
<varlistentry><term>f :</term>
- <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
- <varlistentry><term>x1 :</term>
- <listitem><para> a vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables, where n is number of Variables</para></listitem></varlistentry>
- <varlistentry><term>x2 :</term>
- <listitem><para> a vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where 'n' is the number of Variables. If x2 is empty it means upper bound is +infinity</para></listitem></varlistentry>
+ <listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry>
+ <varlistentry><term><latex>x_{1}</latex> :</term>
+ <listitem><para> A vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where n is number of variables. If it is empty it means that the lower bound is <latex>-\infty</latex>.</para></listitem></varlistentry>
+ <varlistentry><term><latex>x_{2}</latex> :</term>
+ <listitem><para> A vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where n is the number of variables. If it is empty it means that the upper bound is <latex>\infty</latex>.</para></listitem></varlistentry>
<varlistentry><term>options :</term>
- <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
+ <listitem><para> A list, containing the options for user to specify. See below for details.</para></listitem></varlistentry>
+</variablelist>
+</refsection>
+ <refsection>
+<title> Outputs</title>
+ <variablelist>
<varlistentry><term>xopt :</term>
- <listitem><para> a vector of doubles, containing the the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
- <listitem><para> a scalar of double, containing the the function value at x.</para></listitem></varlistentry>
+ <listitem><para> A double, containing the the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
- <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
+ <listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
- <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
+ <listitem><para> A structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> a structure, containing the Lagrange multipliers of lower bound and upper bound at the optimized point. See below for details.</para></listitem></varlistentry>
+ <listitem><para> A structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -69,47 +74,58 @@ Find the minimum of f(x) such that
\begin{eqnarray}
&amp;\mbox{min}_{x}
&amp; f(x)\\
-&amp; \text{subject to} &amp; x1 \ &lt; x \ &lt; x2 \\
+&amp; \text{Subjected to:}\\
+&amp; x_{1} \leq x \leq x_{2} \\
\end{eqnarray}
</latex>
</para>
<para>
-The routine calls Ipopt for solving the Bounded Optimization problem, Ipopt is a library written in C++.
+fminbnd calls Ipopt which is an optimization library written in C++, to solve the bound optimization problem.
+ </para>
+
+<para>
+<title>Options</title>
+The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
+ </para>
+ <para>
+options= list("MaxIter", [---], "CpuTime", [---], "TolX", [---]);
</para>
<para>
-The options allows the user to set various parameters of the Optimization problem.
-It should be defined as type "list" and contains the following fields.
+The options should be defined as type "list" and consist of the following fields:
<itemizedlist>
-<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], TolX, [----]);</listitem>
-<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
-<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
-<listitem>TolX : a Scalar, containing the Tolerance value that the solver should take.</listitem>
-<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600], TolX, [1e-4]);</listitem>
+<listitem>MaxIter : A scalar, specifying the maximum number of iterations that the solver should take.</listitem>
+<listitem>CpuTime : A scalar, specifying the maximum amount of CPU Time in seconds that the solver should take.</listitem>
+<listitem>TolX : A scalar, containing the tolerance value that the solver should take.</listitem>
</itemizedlist>
+The default values for the various items are given as:
</para>
<para>
-The exitflag allows to know the status of the optimization which is given back by Ipopt.
+options = list("MaxIter", [3000], "CpuTime", [600]);
+ </para>
+
+ <para>
+The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<itemizedlist>
-<listitem>exitflag=0 : Optimal Solution Found </listitem>
-<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
-<listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
-<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
-<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
-<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+<listitem> 0 : Optimal Solution Found </listitem>
+<listitem> 1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+<listitem> 2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
+<listitem> 3 : Stop at Tiny Step.</listitem>
+<listitem> 4 : Solved To Acceptable Level.</listitem>
+<listitem> 5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
</para>
<para>
-For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+For more details on exitflag, see the ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/
</para>
<para>
The output data structure contains detailed informations about the optimization process.
-It has type "struct" and contains the following fields.
+It is of type "struct" and contains the following fields.
<itemizedlist>
-<listitem>output.Iterations: The number of iterations performed during the search</listitem>
-<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
-<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
-<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
-<listitem>output.Message: The output message for the problem</listitem>
+<listitem>output.Iterations: The number of iterations performed.</listitem>
+<listitem>output.Cpu_Time : The total cpu-time taken.</listitem>
+<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed.</listitem>
+<listitem>output.Dual_Infeasibility : The Dual Infeasiblity of the final soution.</listitem>
+<listitem>output.Message: The output message for the problem.</listitem>
</itemizedlist>
</para>
<para>
@@ -125,58 +141,108 @@ It has type "struct" and contains the following fields.
</para>
</refsection>
+ <para>
+A few examples displaying the various functionalities of fminbnd have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
+ </para>
<refsection>
- <title>Examples</title>
+ <title>Example</title>
+<para>
+ Here we solve a simple non-linear objective function, bounded in the interval [0,1000].
+ </para>
+ <para>
+Find x in R such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = \dfrac{1}{x^{2}}
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+\hspace{70pt} &amp;0 &amp;\leq x &amp;\leq 1000\\
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+</para>
<programlisting role="example"><![CDATA[
-//Find x in R^6 such that it minimizes:
-//f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
-//-2 <= x1,x2,x3,x4,x5,x6 <= 2
+Example 1: Minimizing a bound function in R.
//Objective function to be minimised
function y=f(x)
-y=0
-for i =1:6
-y=y+sin(x(i));
-end
+y=1/x^2
endfunction
//Variable bounds
-x1 = [-2, -2, -2, -2, -2, -2];
-x2 = [2, 2, 2, 2, 2, 2];
-//Options
-options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
+x1 = [0];
+x2 = [1000];
//Calling Ipopt
-[x,fval] =fminbnd(f, x1, x2, options)
-// Press ENTER to continue
+[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2)
+
]]></programlisting>
</refsection>
+
<refsection>
- <title>Examples</title>
+ <title>Example</title>
+<para>
+Here we solve a bounded objective function in R^6. We use this function to illustrate how we can further enhance the functionality of fminbnd by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 2. We also set solver parameters using the options.
+ </para>
+ <para>
+Find x in R^6 such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = sin(x_{1}) + sin(x_{2}) + sin(x_{3}) + sin(x_{4}) + sin(x_{5}) + sin(x_{6})
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+\hspace{70pt} &amp;-2 &amp;\leq x{1}, x{2}, x{3}, x{4}, x{5}, x{6} &amp;\leq 2\\
+\end{eqnarray}
+</latex>
+ </para>
+<para>
+</para>
<programlisting role="example"><![CDATA[
-//Find x in R such that it minimizes:
-//f(x)= 1/x^2
-//0 <= x <= 1000
+//Example 2: Solving an objective function in R^6.
//Objective function to be minimised
function y=f(x)
-y=1/x^2
+y=0
+for i =1:6
+y=y+sin(x(i));
+end
endfunction
//Variable bounds
-x1 = [0];
-x2 = [1000];
+x1 = [-2, -2, -2, -2, -2, -2];
+x2 = [2, 2, 2, 2, 2, 2];
+//Options
+options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
//Calling Ipopt
-[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2)
-// Press ENTER to continue
-
+[x,fval] =fminbnd(f, x1, x2, options)
]]></programlisting>
</refsection>
<refsection>
- <title>Examples</title>
+ <title>Example</title>
+<para>
+Unbounded Problems: Find x in R^2 such that it minimizes:
+</para>
+ <para>
+<latex>
+\begin{eqnarray}
+f(x) = -((x_{1}-1)^{2}+(x_{2}-1)^{2})
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+-\infty &amp;\leq x_{1} &amp;\leq \infty\\
+-\infty &amp;\leq x_{2} &amp;\leq \infty
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
<programlisting role="example"><![CDATA[
-//The below problem is an unbounded problem:
-//Find x in R^2 such that it minimizes:
-//f(x)= -[(x1-1)^2 + (x2-1)^2]
-//-inf <= x1,x2 <= inf
+//Example 3: Unbounded objective function.
//Objective function to be minimised
function y=f(x)
y=-((x(1)-1)^2+(x(2)-1)^2);