diff options
Diffstat (limited to 'help/en_US/fminbnd.xml')
-rw-r--r-- | help/en_US/fminbnd.xml | 194 |
1 files changed, 130 insertions, 64 deletions
diff --git a/help/en_US/fminbnd.xml b/help/en_US/fminbnd.xml index 99d21ea..b71d5cf 100644 --- a/help/en_US/fminbnd.xml +++ b/help/en_US/fminbnd.xml @@ -35,26 +35,31 @@ </refsynopsisdiv> <refsection> - <title>Parameters</title> + <title>Input Parameters</title> <variablelist> <varlistentry><term>f :</term> - <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry> - <varlistentry><term>x1 :</term> - <listitem><para> a vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables, where n is number of Variables</para></listitem></varlistentry> - <varlistentry><term>x2 :</term> - <listitem><para> a vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where 'n' is the number of Variables. If x2 is empty it means upper bound is +infinity</para></listitem></varlistentry> + <listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry> + <varlistentry><term><latex>x_{1}</latex> :</term> + <listitem><para> A vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where n is number of variables. If it is empty it means that the lower bound is <latex>-\infty</latex>.</para></listitem></varlistentry> + <varlistentry><term><latex>x_{2}</latex> :</term> + <listitem><para> A vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where n is the number of variables. If it is empty it means that the upper bound is <latex>\infty</latex>.</para></listitem></varlistentry> <varlistentry><term>options :</term> - <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry> + <listitem><para> A list, containing the options for user to specify. See below for details.</para></listitem></varlistentry> +</variablelist> +</refsection> + <refsection> +<title> Outputs</title> + <variablelist> <varlistentry><term>xopt :</term> - <listitem><para> a vector of doubles, containing the the computed solution of the optimization problem.</para></listitem></varlistentry> + <listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry> <varlistentry><term>fopt :</term> - <listitem><para> a scalar of double, containing the the function value at x.</para></listitem></varlistentry> + <listitem><para> A double, containing the the function value at x.</para></listitem></varlistentry> <varlistentry><term>exitflag :</term> - <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry> + <listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry> <varlistentry><term>output :</term> - <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry> + <listitem><para> A structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry> <varlistentry><term>lambda :</term> - <listitem><para> a structure, containing the Lagrange multipliers of lower bound and upper bound at the optimized point. See below for details.</para></listitem></varlistentry> + <listitem><para> A structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.</para></listitem></varlistentry> </variablelist> </refsection> @@ -69,47 +74,58 @@ Find the minimum of f(x) such that \begin{eqnarray} &\mbox{min}_{x} & f(x)\\ -& \text{subject to} & x1 \ < x \ < x2 \\ +& \text{Subjected to:}\\ +& x_{1} \leq x \leq x_{2} \\ \end{eqnarray} </latex> </para> <para> -The routine calls Ipopt for solving the Bounded Optimization problem, Ipopt is a library written in C++. +fminbnd calls Ipopt which is an optimization library written in C++, to solve the bound optimization problem. + </para> + +<para> +<title>Options</title> +The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by: + </para> + <para> +options= list("MaxIter", [---], "CpuTime", [---], "TolX", [---]); </para> <para> -The options allows the user to set various parameters of the Optimization problem. -It should be defined as type "list" and contains the following fields. +The options should be defined as type "list" and consist of the following fields: <itemizedlist> -<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], TolX, [----]);</listitem> -<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem> -<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem> -<listitem>TolX : a Scalar, containing the Tolerance value that the solver should take.</listitem> -<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600], TolX, [1e-4]);</listitem> +<listitem>MaxIter : A scalar, specifying the maximum number of iterations that the solver should take.</listitem> +<listitem>CpuTime : A scalar, specifying the maximum amount of CPU Time in seconds that the solver should take.</listitem> +<listitem>TolX : A scalar, containing the tolerance value that the solver should take.</listitem> </itemizedlist> +The default values for the various items are given as: </para> <para> -The exitflag allows to know the status of the optimization which is given back by Ipopt. +options = list("MaxIter", [3000], "CpuTime", [600]); + </para> + + <para> +The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below: <itemizedlist> -<listitem>exitflag=0 : Optimal Solution Found </listitem> -<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem> -<listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem> -<listitem>exitflag=3 : Stop at Tiny Step.</listitem> -<listitem>exitflag=4 : Solved To Acceptable Level.</listitem> -<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem> +<listitem> 0 : Optimal Solution Found </listitem> +<listitem> 1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem> +<listitem> 2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem> +<listitem> 3 : Stop at Tiny Step.</listitem> +<listitem> 4 : Solved To Acceptable Level.</listitem> +<listitem> 5 : Converged to a point of local infeasibility.</listitem> </itemizedlist> </para> <para> -For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/ +For more details on exitflag, see the ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/ </para> <para> The output data structure contains detailed informations about the optimization process. -It has type "struct" and contains the following fields. +It is of type "struct" and contains the following fields. <itemizedlist> -<listitem>output.Iterations: The number of iterations performed during the search</listitem> -<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem> -<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem> -<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem> -<listitem>output.Message: The output message for the problem</listitem> +<listitem>output.Iterations: The number of iterations performed.</listitem> +<listitem>output.Cpu_Time : The total cpu-time taken.</listitem> +<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed.</listitem> +<listitem>output.Dual_Infeasibility : The Dual Infeasiblity of the final soution.</listitem> +<listitem>output.Message: The output message for the problem.</listitem> </itemizedlist> </para> <para> @@ -125,58 +141,108 @@ It has type "struct" and contains the following fields. </para> </refsection> + <para> +A few examples displaying the various functionalities of fminbnd have been provided below. You will find a series of problems and the appropriate code snippets to solve them. + </para> <refsection> - <title>Examples</title> + <title>Example</title> +<para> + Here we solve a simple non-linear objective function, bounded in the interval [0,1000]. + </para> + <para> +Find x in R such that it minimizes: + </para> + <para> +<latex> +\begin{eqnarray} +\mbox{min}_{x}\ f(x) = \dfrac{1}{x^{2}} +\end{eqnarray} +\\\text{Subjected to:}\\ +\begin{eqnarray} +\hspace{70pt} &0 &\leq x &\leq 1000\\ +\end{eqnarray} +</latex> + </para> + <para> +</para> <programlisting role="example"><![CDATA[ -//Find x in R^6 such that it minimizes: -//f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6) -//-2 <= x1,x2,x3,x4,x5,x6 <= 2 +Example 1: Minimizing a bound function in R. //Objective function to be minimised function y=f(x) -y=0 -for i =1:6 -y=y+sin(x(i)); -end +y=1/x^2 endfunction //Variable bounds -x1 = [-2, -2, -2, -2, -2, -2]; -x2 = [2, 2, 2, 2, 2, 2]; -//Options -options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6]) +x1 = [0]; +x2 = [1000]; //Calling Ipopt -[x,fval] =fminbnd(f, x1, x2, options) -// Press ENTER to continue +[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2) + ]]></programlisting> </refsection> + <refsection> - <title>Examples</title> + <title>Example</title> +<para> +Here we solve a bounded objective function in R^6. We use this function to illustrate how we can further enhance the functionality of fminbnd by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 2. We also set solver parameters using the options. + </para> + <para> +Find x in R^6 such that it minimizes: + </para> + <para> +<latex> +\begin{eqnarray} +\mbox{min}_{x}\ f(x) = sin(x_{1}) + sin(x_{2}) + sin(x_{3}) + sin(x_{4}) + sin(x_{5}) + sin(x_{6}) +\end{eqnarray} +\\\text{Subjected to:}\\ +\begin{eqnarray} +\hspace{70pt} &-2 &\leq x{1}, x{2}, x{3}, x{4}, x{5}, x{6} &\leq 2\\ +\end{eqnarray} +</latex> + </para> +<para> +</para> <programlisting role="example"><![CDATA[ -//Find x in R such that it minimizes: -//f(x)= 1/x^2 -//0 <= x <= 1000 +//Example 2: Solving an objective function in R^6. //Objective function to be minimised function y=f(x) -y=1/x^2 +y=0 +for i =1:6 +y=y+sin(x(i)); +end endfunction //Variable bounds -x1 = [0]; -x2 = [1000]; +x1 = [-2, -2, -2, -2, -2, -2]; +x2 = [2, 2, 2, 2, 2, 2]; +//Options +options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6]) //Calling Ipopt -[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2) -// Press ENTER to continue - +[x,fval] =fminbnd(f, x1, x2, options) ]]></programlisting> </refsection> <refsection> - <title>Examples</title> + <title>Example</title> +<para> +Unbounded Problems: Find x in R^2 such that it minimizes: +</para> + <para> +<latex> +\begin{eqnarray} +f(x) = -((x_{1}-1)^{2}+(x_{2}-1)^{2}) +\end{eqnarray} +\\\text{Subjected to:}\\ +\begin{eqnarray} +-\infty &\leq x_{1} &\leq \infty\\ +-\infty &\leq x_{2} &\leq \infty +\end{eqnarray} +</latex> + </para> + <para> + </para> <programlisting role="example"><![CDATA[ -//The below problem is an unbounded problem: -//Find x in R^2 such that it minimizes: -//f(x)= -[(x1-1)^2 + (x2-1)^2] -//-inf <= x1,x2 <= inf +//Example 3: Unbounded objective function. //Objective function to be minimised function y=f(x) y=-((x(1)-1)^2+(x(2)-1)^2); |