// Copyright (C) 2004, 2009 International Business Machines and others. // All Rights Reserved. // This code is published under the Eclipse Public License. // // $Id: IpTNLP.hpp 2212 2013-04-14 14:51:52Z stefan $ // // Authors: Carl Laird, Andreas Waechter IBM 2004-08-13 #ifndef __IPTNLP_HPP__ #define __IPTNLP_HPP__ #include "IpUtils.hpp" #include "IpReferenced.hpp" #include "IpException.hpp" #include "IpAlgTypes.hpp" #include "IpReturnCodes.hpp" #include namespace Ipopt { // forward declarations class IpoptData; class IpoptCalculatedQuantities; class IteratesVector; /** Base class for all NLP's that use standard triplet matrix form * and dense vectors. This is the standard base class for all * NLP's that use the standard triplet matrix form (as for Harwell * routines) and dense vectors. The class TNLPAdapter then converts * this interface to an interface that can be used directly by * ipopt. * * This interface presents the problem form: * * min f(x) * * s.t. gL <= g(x) <= gU * * xL <= x <= xU * * In order to specify an equality constraint, set gL_i = gU_i = * rhs. The value that indicates "infinity" for the bounds * (i.e. the variable or constraint has no lower bound (-infinity) * or upper bound (+infinity)) is set through the option * nlp_lower_bound_inf and nlp_upper_bound_inf. To indicate that a * variable has no upper or lower bound, set the bound to * -ipopt_inf or +ipopt_inf respectively */ class TNLP : public ReferencedObject { public: /** Type of the constraints*/ enum LinearityType { LINEAR/** Constraint/Variable is linear.*/, NON_LINEAR/**Constraint/Varaible is non-linear.*/ }; /**@name Constructors/Destructors */ //@{ TNLP() {} /** Default destructor */ virtual ~TNLP() {} //@} DECLARE_STD_EXCEPTION(INVALID_TNLP); /**@name methods to gather information about the NLP */ //@{ /** overload this method to return the number of variables * and constraints, and the number of non-zeros in the jacobian and * the hessian. The index_style parameter lets you specify C or Fortran * style indexing for the sparse matrix iRow and jCol parameters. * C_STYLE is 0-based, and FORTRAN_STYLE is 1-based. */ enum IndexStyleEnum { C_STYLE=0, FORTRAN_STYLE=1 }; virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, IndexStyleEnum& index_style)=0; typedef std::map > StringMetaDataMapType; typedef std::map > IntegerMetaDataMapType; typedef std::map > NumericMetaDataMapType; /** overload this method to return any meta data for * the variables and the constraints */ virtual bool get_var_con_metadata(Index n, StringMetaDataMapType& var_string_md, IntegerMetaDataMapType& var_integer_md, NumericMetaDataMapType& var_numeric_md, Index m, StringMetaDataMapType& con_string_md, IntegerMetaDataMapType& con_integer_md, NumericMetaDataMapType& con_numeric_md) { return false; } /** overload this method to return the information about the bound * on the variables and constraints. The value that indicates * that a bound does not exist is specified in the parameters * nlp_lower_bound_inf and nlp_upper_bound_inf. By default, * nlp_lower_bound_inf is -1e19 and nlp_upper_bound_inf is * 1e19. (see TNLPAdapter) */ virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u)=0; /** overload this method to return scaling parameters. This is * only called if the options are set to retrieve user scaling. * There, use_x_scaling (or use_g_scaling) should get set to true * only if the variables (or constraints) are to be scaled. This * method should return true only if the scaling parameters could * be provided. */ virtual bool get_scaling_parameters(Number& obj_scaling, bool& use_x_scaling, Index n, Number* x_scaling, bool& use_g_scaling, Index m, Number* g_scaling) { return false; } /** overload this method to return the variables linearity * (TNLP::LINEAR or TNLP::NON_LINEAR). The var_types * array has been allocated with length at least n. (default implementation * just return false and does not fill the array).*/ virtual bool get_variables_linearity(Index n, LinearityType* var_types) { return false; } /** overload this method to return the constraint linearity. * array has been allocated with length at least n. (default implementation * just return false and does not fill the array).*/ virtual bool get_constraints_linearity(Index m, LinearityType* const_types) { return false; } /** overload this method to return the starting point. The bool * variables indicate whether the algorithm wants you to * initialize x, z_L/z_u, and lambda, respectively. If, for some * reason, the algorithm wants you to initialize these and you * cannot, return false, which will cause Ipopt to stop. You * will have to run Ipopt with different options then. */ virtual bool get_starting_point(Index n, bool init_x, Number* x, bool init_z, Number* z_L, Number* z_U, Index m, bool init_lambda, Number* lambda)=0; /** overload this method to provide an Ipopt iterate (already in * the form Ipopt requires it internally) for a warm start. * Since this is only for expert users, a default dummy * implementation is provided and returns false. */ virtual bool get_warm_start_iterate(IteratesVector& warm_start_iterate) { return false; } /** overload this method to return the value of the objective function */ virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value)=0; /** overload this method to return the vector of the gradient of * the objective w.r.t. x */ virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)=0; /** overload this method to return the vector of constraint values */ virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)=0; /** overload this method to return the jacobian of the * constraints. The vectors iRow and jCol only need to be set * once. The first call is used to set the structure only (iRow * and jCol will be non-NULL, and values will be NULL) For * subsequent calls, iRow and jCol will be NULL. */ virtual bool eval_jac_g(Index n, const Number* x, bool new_x, Index m, Index nele_jac, Index* iRow, Index *jCol, Number* values)=0; /** overload this method to return the hessian of the * lagrangian. The vectors iRow and jCol only need to be set once * (during the first call). The first call is used to set the * structure only (iRow and jCol will be non-NULL, and values * will be NULL) For subsequent calls, iRow and jCol will be * NULL. This matrix is symmetric - specify the lower diagonal * only. A default implementation is provided, in case the user * wants to se quasi-Newton approximations to estimate the second * derivatives and doesn't not neet to implement this method. */ virtual bool eval_h(Index n, const Number* x, bool new_x, Number obj_factor, Index m, const Number* lambda, bool new_lambda, Index nele_hess, Index* iRow, Index* jCol, Number* values) { return false; } //@} /** @name Solution Methods */ //@{ /** This method is called when the algorithm is complete so the TNLP can store/write the solution */ virtual void finalize_solution(SolverReturn status, Index n, const Number* x, const Number* z_L, const Number* z_U, Index m, const Number* g, const Number* lambda, Number obj_value, const IpoptData* ip_data, IpoptCalculatedQuantities* ip_cq)=0; /** This method is called just before finalize_solution. With * this method, the algorithm returns any metadata collected * during its run, including the metadata provided by the user * with the above get_var_con_metadata. Each metadata can be of * type string, integer, and numeric. It can be associated to * either the variables or the constraints. The metadata that * was associated with the primal variable vector is stored in * var_..._md. The metadata associated with the constraint * multipliers is stored in con_..._md. The metadata associated * with the bound multipliers is stored in var_..._md, with the * suffixes "_z_L", and "_z_U", denoting lower and upper * bounds. */ virtual void finalize_metadata(Index n, const StringMetaDataMapType& var_string_md, const IntegerMetaDataMapType& var_integer_md, const NumericMetaDataMapType& var_numeric_md, Index m, const StringMetaDataMapType& con_string_md, const IntegerMetaDataMapType& con_integer_md, const NumericMetaDataMapType& con_numeric_md) {} /** Intermediate Callback method for the user. Providing dummy * default implementation. For details see IntermediateCallBack * in IpNLP.hpp. */ virtual bool intermediate_callback(AlgorithmMode mode, Index iter, Number obj_value, Number inf_pr, Number inf_du, Number mu, Number d_norm, Number regularization_size, Number alpha_du, Number alpha_pr, Index ls_trials, const IpoptData* ip_data, IpoptCalculatedQuantities* ip_cq) { return true; } //@} /** @name Methods for quasi-Newton approximation. If the second * derivatives are approximated by Ipopt, it is better to do this * only in the space of nonlinear variables. The following * methods are call by Ipopt if the quasi-Newton approximation is * selected. If -1 is returned as number of nonlinear variables, * Ipopt assumes that all variables are nonlinear. Otherwise, it * calls get_list_of_nonlinear_variables with an array into which * the indices of the nonlinear variables should be written - the * array has the lengths num_nonlin_vars, which is identical with * the return value of get_number_of_nonlinear_variables(). It * is assumed that the indices are counted starting with 1 in the * FORTRAN_STYLE, and 0 for the C_STYLE. */ //@{ virtual Index get_number_of_nonlinear_variables() { return -1; } virtual bool get_list_of_nonlinear_variables(Index num_nonlin_vars, Index* pos_nonlin_vars) { return false; } //@} private: /**@name Default Compiler Generated Methods * (Hidden to avoid implicit creation/calling). * These methods are not implemented and * we do not want the compiler to implement * them for us, so we declare them private * and do not define them. This ensures that * they will not be implicitly created/called. */ //@{ /** Default Constructor */ //TNLP(); /** Copy Constructor */ TNLP(const TNLP&); /** Overloaded Equals Operator */ void operator=(const TNLP&); //@} }; } // namespace Ipopt #endif