/* $Id: CbcCutGenerator.hpp 2081 2014-09-25 11:31:17Z forrest $ */ // Copyright (C) 2003, International Business Machines // Corporation and others. All Rights Reserved. // This code is licensed under the terms of the Eclipse Public License (EPL). #ifndef CbcCutGenerator_H #define CbcCutGenerator_H #include "OsiSolverInterface.hpp" #include "OsiCuts.hpp" #include "CglCutGenerator.hpp" #include "CbcCutModifier.hpp" class CbcModel; class OsiRowCut; class OsiRowCutDebugger; //############################################################################# /** Interface between Cbc and Cut Generation Library. \c CbcCutGenerator is intended to provide an intelligent interface between Cbc and the cutting plane algorithms in the CGL. A \c CbcCutGenerator is bound to a \c CglCutGenerator and to an \c CbcModel. It contains parameters which control when and how the \c generateCuts method of the \c CglCutGenerator will be called. The builtin decision criteria available to use when deciding whether to generate cuts are limited: every X nodes, when a solution is found, and when a subproblem is found to be infeasible. The idea is that the class will grow more intelligent with time. \todo Add a pointer to function member which will allow a client to install their own decision algorithm to decide whether or not to call the CGL \p generateCuts method. Create a default decision method that looks at the builtin criteria. \todo It strikes me as not good that generateCuts contains code specific to individual CGL algorithms. Another set of pointer to function members, so that the client can specify the cut generation method as well as pre- and post-generation methods? Taken a bit further, should this class contain a bunch of pointer to function members, one for each of the places where the cut generator might be referenced? Initialization, root node, search tree node, discovery of solution, and termination all come to mind. Initialization and termination would also be useful for instrumenting cbc. */ class CbcCutGenerator { public: /** \name Generate Cuts */ //@{ /** Generate cuts for the client model. Evaluate the state of the client model and decide whether to generate cuts. The generated cuts are inserted into and returned in the collection of cuts \p cs. If \p fullScan is !=0, the generator is obliged to call the CGL \c generateCuts routine. Otherwise, it is free to make a local decision. Negative fullScan says things like at integer solution The current implementation uses \c whenCutGenerator_ to decide. The routine returns true if reoptimisation is needed (because the state of the solver interface has been modified). If node then can find out depth */ bool generateCuts( OsiCuts &cs, int fullScan, OsiSolverInterface * solver, CbcNode * node); //@} /**@name Constructors and destructors */ //@{ /// Default constructor CbcCutGenerator (); /// Normal constructor CbcCutGenerator(CbcModel * model, CglCutGenerator * generator, int howOften = 1, const char * name = NULL, bool normal = true, bool atSolution = false, bool infeasible = false, int howOftenInsub = -100, int whatDepth = -1, int whatDepthInSub = -1, int switchOffIfLessThan = 0); /// Copy constructor CbcCutGenerator (const CbcCutGenerator &); /// Assignment operator CbcCutGenerator & operator=(const CbcCutGenerator& rhs); /// Destructor ~CbcCutGenerator (); //@} /**@name Gets and sets */ //@{ /** Set the client model. In addition to setting the client model, refreshModel also calls the \c refreshSolver method of the CglCutGenerator object. */ void refreshModel(CbcModel * model); /// return name of generator inline const char * cutGeneratorName() const { return generatorName_; } /// Create C++ lines to show how to tune void generateTuning( FILE * fp); /** Set the cut generation interval Set the number of nodes evaluated between calls to the Cgl object's \p generateCuts routine. If \p value is positive, cuts will always be generated at the specified interval. If \p value is negative, cuts will initially be generated at the specified interval, but Cbc may adjust the value depending on the success of cuts produced by this generator. A value of -100 disables the generator, while a value of -99 means just at root. */ void setHowOften(int value) ; /// Get the cut generation interval. inline int howOften() const { return whenCutGenerator_; } /// Get the cut generation interval.in sub tree inline int howOftenInSub() const { return whenCutGeneratorInSub_; } /// Get level of cut inaccuracy (0 means exact e.g. cliques) inline int inaccuracy() const { return inaccuracy_; } /// Set level of cut inaccuracy (0 means exact e.g. cliques) inline void setInaccuracy(int level) { inaccuracy_ = level; } /** Set the cut generation depth Set the depth criterion for calls to the Cgl object's \p generateCuts routine. Only active if > 0. If whenCutGenerator is positive and this is positive then this overrides. If whenCutGenerator is -1 then this is used as criterion if any cuts were generated at root node. If whenCutGenerator is anything else this is ignored. */ void setWhatDepth(int value) ; /// Set the cut generation depth in sub tree void setWhatDepthInSub(int value) ; /// Get the cut generation depth criterion. inline int whatDepth() const { return depthCutGenerator_; } /// Get the cut generation depth criterion.in sub tree inline int whatDepthInSub() const { return depthCutGeneratorInSub_; } /// Set maximum number of times to enter inline void setMaximumTries(int value) { maximumTries_ = value;} /// Get maximum number of times to enter inline int maximumTries() const { return maximumTries_;} /// Get switches inline int switches() const { return switches_; } /// Set switches (for copying from virgin state) inline void setSwitches(int value) { switches_ = value; } /// Get whether the cut generator should be called in the normal place inline bool normal() const { return (switches_&1) != 0; } /// Set whether the cut generator should be called in the normal place inline void setNormal(bool value) { switches_ &= ~1; switches_ |= value ? 1 : 0; } /// Get whether the cut generator should be called when a solution is found inline bool atSolution() const { return (switches_&2) != 0; } /// Set whether the cut generator should be called when a solution is found inline void setAtSolution(bool value) { switches_ &= ~2; switches_ |= value ? 2 : 0; } /** Get whether the cut generator should be called when the subproblem is found to be infeasible. */ inline bool whenInfeasible() const { return (switches_&4) != 0; } /** Set whether the cut generator should be called when the subproblem is found to be infeasible. */ inline void setWhenInfeasible(bool value) { switches_ &= ~4; switches_ |= value ? 4 : 0; } /// Get whether the cut generator is being timed inline bool timing() const { return (switches_&64) != 0; } /// Set whether the cut generator is being timed inline void setTiming(bool value) { switches_ &= ~64; switches_ |= value ? 64 : 0; timeInCutGenerator_ = 0.0; } /// Return time taken in cut generator inline double timeInCutGenerator() const { return timeInCutGenerator_; } inline void incrementTimeInCutGenerator(double value) { timeInCutGenerator_ += value; } /// Get the \c CglCutGenerator corresponding to this \c CbcCutGenerator. inline CglCutGenerator * generator() const { return generator_; } /// Number times cut generator entered inline int numberTimesEntered() const { return numberTimes_; } inline void setNumberTimesEntered(int value) { numberTimes_ = value; } inline void incrementNumberTimesEntered(int value = 1) { numberTimes_ += value; } /// Total number of cuts added inline int numberCutsInTotal() const { return numberCuts_; } inline void setNumberCutsInTotal(int value) { numberCuts_ = value; } inline void incrementNumberCutsInTotal(int value = 1) { numberCuts_ += value; } /// Total number of elements added inline int numberElementsInTotal() const { return numberElements_; } inline void setNumberElementsInTotal(int value) { numberElements_ = value; } inline void incrementNumberElementsInTotal(int value = 1) { numberElements_ += value; } /// Total number of column cuts inline int numberColumnCuts() const { return numberColumnCuts_; } inline void setNumberColumnCuts(int value) { numberColumnCuts_ = value; } inline void incrementNumberColumnCuts(int value = 1) { numberColumnCuts_ += value; } /// Total number of cuts active after (at end of n cut passes at each node) inline int numberCutsActive() const { return numberCutsActive_; } inline void setNumberCutsActive(int value) { numberCutsActive_ = value; } inline void incrementNumberCutsActive(int value = 1) { numberCutsActive_ += value; } inline void setSwitchOffIfLessThan(int value) { switchOffIfLessThan_ = value; } inline int switchOffIfLessThan() const { return switchOffIfLessThan_; } /// Say if optimal basis needed inline bool needsOptimalBasis() const { return (switches_&128) != 0; } /// Set if optimal basis needed inline void setNeedsOptimalBasis(bool yesNo) { switches_ &= ~128; switches_ |= yesNo ? 128 : 0; } /// Whether generator MUST be called again if any cuts (i.e. ignore break from loop) inline bool mustCallAgain() const { return (switches_&8) != 0; } /// Set whether generator MUST be called again if any cuts (i.e. ignore break from loop) inline void setMustCallAgain(bool yesNo) { switches_ &= ~8; switches_ |= yesNo ? 8 : 0; } /// Whether generator switched off for moment inline bool switchedOff() const { return (switches_&16) != 0; } /// Set whether generator switched off for moment inline void setSwitchedOff(bool yesNo) { switches_ &= ~16; switches_ |= yesNo ? 16 : 0; } /// Whether last round of cuts did little inline bool ineffectualCuts() const { return (switches_&512) != 0; } /// Set whether last round of cuts did little inline void setIneffectualCuts(bool yesNo) { switches_ &= ~512; switches_ |= yesNo ? 512 : 0; } /// Whether to use if any cuts generated inline bool whetherToUse() const { return (switches_&1024) != 0; } /// Set whether to use if any cuts generated inline void setWhetherToUse(bool yesNo) { switches_ &= ~1024; switches_ |= yesNo ? 1024 : 0; } /// Whether in must call again mode (or after others) inline bool whetherInMustCallAgainMode() const { return (switches_&2048) != 0; } /// Set whether in must call again mode (or after others) inline void setWhetherInMustCallAgainMode(bool yesNo) { switches_ &= ~2048; switches_ |= yesNo ? 2048 : 0; } /// Whether to call at end inline bool whetherCallAtEnd() const { return (switches_&4096) != 0; } /// Set whether to call at end inline void setWhetherCallAtEnd(bool yesNo) { switches_ &= ~4096; switches_ |= yesNo ? 4096 : 0; } /// Whether needs refresh on copy inline bool needsRefresh() const { return (switches_&8192) != 0; } /// Set whether needs refresh on copy inline void setNeedsRefresh(bool yesNo) { switches_ &= ~8192; switches_ |= yesNo ? 8192 : 0; } /// Number of cuts generated at root inline int numberCutsAtRoot() const { return numberCutsAtRoot_; } inline void setNumberCutsAtRoot(int value) { numberCutsAtRoot_ = value; } /// Number of cuts active at root inline int numberActiveCutsAtRoot() const { return numberActiveCutsAtRoot_; } inline void setNumberActiveCutsAtRoot(int value) { numberActiveCutsAtRoot_ = value; } /// Number of short cuts at root inline int numberShortCutsAtRoot() const { return numberShortCutsAtRoot_; } inline void setNumberShortCutsAtRoot(int value) { numberShortCutsAtRoot_ = value; } /// Set model inline void setModel(CbcModel * model) { model_ = model; } /// Whether global cuts at root inline bool globalCutsAtRoot() const { return (switches_&32) != 0; } /// Set whether global cuts at root inline void setGlobalCutsAtRoot(bool yesNo) { switches_ &= ~32; switches_ |= yesNo ? 32 : 0; } /// Whether global cuts inline bool globalCuts() const { return (switches_&256) != 0; } /// Set whether global cuts inline void setGlobalCuts(bool yesNo) { switches_ &= ~256; switches_ |= yesNo ? 256 : 0; } /// Add in statistics from other void addStatistics(const CbcCutGenerator * other); /// Scale back statistics by factor void scaleBackStatistics(int factor); //@} private: /**@name Private gets and sets */ //@{ //@} /// Saved cuts OsiCuts savedCuts_; /// Time in cut generator double timeInCutGenerator_; /// The client model CbcModel *model_; // The CglCutGenerator object CglCutGenerator * generator_; /// Name of generator char * generatorName_; /** Number of nodes between calls to the CglCutGenerator::generateCuts routine. */ int whenCutGenerator_; /** Number of nodes between calls to the CglCutGenerator::generateCuts routine in sub tree. */ int whenCutGeneratorInSub_; /** If first pass at root produces fewer than this cuts then switch off */ int switchOffIfLessThan_; /** Depth at which to call the CglCutGenerator::generateCuts routine (If >0 then overrides when and is called if depth%depthCutGenerator==0). */ int depthCutGenerator_; /** Depth at which to call the CglCutGenerator::generateCuts routine (If >0 then overrides when and is called if depth%depthCutGenerator==0). In sub tree. */ int depthCutGeneratorInSub_; /// Level of cut inaccuracy (0 means exact e.g. cliques) int inaccuracy_; /// Number times cut generator entered int numberTimes_; /// Total number of cuts added int numberCuts_; /// Total number of elements added int numberElements_; /// Total number of column cuts added int numberColumnCuts_; /// Total number of cuts active after (at end of n cut passes at each node) int numberCutsActive_; /// Number of cuts generated at root int numberCutsAtRoot_; /// Number of cuts active at root int numberActiveCutsAtRoot_; /// Number of short cuts at root int numberShortCutsAtRoot_; /// Switches - see gets and sets int switches_; /// Maximum number of times to enter int maximumTries_; }; // How often to do if mostly switched off (A) # define SCANCUTS 1000 // How often to do if mostly switched off (probing B) # define SCANCUTS_PROBING 1000 #endif