cbcintlinprog Solves a mixed integer linear programming constrained optimization problem in intlinprog format. Calling Sequence xopt = cbcintlinprog(c,intcon,A,b) xopt = cbcintlinprog(c,intcon,A,b,Aeq,beq) xopt = cbcintlinprog(c,intcon,A,b,Aeq,beq,lb,ub) xopt = cbcintlinprog(c,intcon,A,b,Aeq,beq,lb,ub,options) xopt = cbcintlinprog('path_to_mps_file') xopt = cbcintlinprog('path_to_mps_file',options) [xopt,fopt,status,output] = cbcintlinprog( ... ) Parameters c : a vector of double, contains coefficients of the variables in the objective intcon : Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the // components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable. A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. lb : Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub. ub : Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub. options : a list containing the parameters to be set. xopt : a vector of double, the computed solution of the optimization problem. fopt : a double, the value of the function at x. status : status flag returned from symphony. See below for details. output : The output data structure contains detailed information about the optimization process. See below for details. Description Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by : \begin{eqnarray} &\mbox{min}_{x} & C^T⋅x \\ & \text{subject to} & A⋅x \leq b \\ & & Aeq⋅x = beq \\ & & lb \leq x \leq ub \\ & & x_i \in \!\, \mathbb{Z}, i \in \!\, intcon\\ \end{eqnarray} Examples Examples Authors Akshay Miterani and Pranav Deshpande