// Copyright (C) 2015 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function [xopt,fopt,exitflag,gradient,hessian] = intfminbnd (varargin) // Solves a multi-variable mixed integer non linear programming optimization problem on a bounded interval // // Calling Sequence // xopt = intfminbnd(f,intcon,x1,x2) // xopt = intfminbnd(f,intcon,x1,x2,options) // [xopt,fopt] = intfminbnd(.....) // [xopt,fopt,exitflag]= intfminbnd(.....) // [xopt,fopt,exitflag,output]=intfminbnd(.....) // [xopt,fopt,exitflag,gradient,hessian]=intfminbnd(.....) // // Parameters // f : a function, representing the objective function of the problem // x1 : a vector, containing the lower bound of the variables. // x2 : a vector, containing the upper bound of the variables. // intcon : a vector of integers, represents which variables are constrained to be integers // options : a list, containing the option for user to specify. See below for details. // xopt : a vector of doubles, containing the the computed solution of the optimization problem. // fopt : a scalar of double, containing the the function value at x. // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details. // gradient : a vector of doubles, containing the Objective's gradient of the solution. // hessian : a matrix of doubles, containing the Objective's hessian of the solution. // // Description // Search the minimum of a multi-variable mixed integer non linear programming optimization on bounded interval specified by : // Find the minimum of f(x) such that // // // \begin{eqnarray} // &\mbox{min}_{x} // & f(x)\\ // & \text{subject to} & x1 \ < x \ < x2 \\ // & x_i \in \!\, \mathbb{Z}, i \in \!\, I // \end{eqnarray} // // // The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++. // // The options allows the user to set various parameters of the Optimization problem. // It should be defined as type "list" and contains the following fields. // // Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" ); // IntegerTolerance : a Scalar, a number with that value of an integer is considered integer.. // MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search. // CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take. // AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached. // MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take. // gradobj : a string, to turn on or off the user supplied objective gradient. // hessian : a Scalar, to turn on or off the user supplied objective hessian. // Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off") // // // The exitflag allows to know the status of the optimization which is given back by Ipopt. // // exitflag=0 : Optimal Solution Found // exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal. // exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal. // exitflag=3 : Stop at Tiny Step. // exitflag=4 : Solved To Acceptable Level. // exitflag=5 : Converged to a point of local infeasibility. // // // For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin // // Examples // //Find x in R^6 such that it minimizes: // //f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6) // //-2 <= x1,x2,x3,x4,x5,x6 <= 2 // //Objective function to be minimised // function y=f(x) // y=0 // for i =1:6 // y=y+sin(x(i)); // end // endfunction // //Variable bounds // x1 = [-2, -2, -2, -2, -2, -2]; // x2 = [2, 2, 2, 2, 2, 2]; // intcon = [2 3 4] // //Options // options=list("MaxIter",[1500],"CpuTime", [100]) // [x,fval] =intfminbnd(f ,intcon, x1, x2, options) // // Press ENTER to continue // // Examples // //Find x in R such that it minimizes: // //f(x)= 1/x^2 // //0 <= x <= 1000 // //Objective function to be minimised // function y=f(x) // y=1/x^2; // endfunction // //Variable bounds // x1 = [0]; // x2 = [1000]; // intcon = [1]; // [x,fval,exitflag,output,lambda] =intfminbnd(f,intcon , x1, x2) // // Press ENTER to continue // // Examples // //The below problem is an unbounded problem: // //Find x in R^2 such that it minimizes: // //f(x)= -[(x1-1)^2 + (x2-1)^2] // //-inf <= x1,x2 <= inf // //Objective function to be minimised // function y=f(x) // y=-((x(1)-1)^2+(x(2)-1)^2); // endfunction // //Variable bounds // x1 = [-%inf , -%inf]; // x2 = [ %inf , %inf]; // //Options // options=list("MaxIter",[1500],"CpuTime", [100]) // [x,fval,exitflag,output,lambda] =intfminbnd(f,intcon, x1, x2, options) // Authors // Harpreet Singh //To check the number of input and output arguments [lhs , rhs] = argn(); //To check the number of arguments given by the user if ( rhs<4 | rhs>5 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be int [4 5] "), "intfminbnd", rhs); error(errmsg); end //Storing the Input Parameters fun = varargin(1); intcon = varargin(2); x1 = varargin(3); x2 = varargin(4); nbvar = size(x1,"*"); param = list(); //To check whether options has been entered by user if ( rhs>=5 ) then param =varargin(5); end //To check whether the Input arguments Checktype("intfminbnd", fun, "fun", 1, "function"); Checktype("intfminbnd", intcon, "intcon", 2, "constant"); Checktype("intfminbnd", x1, "x1", 3, "constant"); Checktype("intfminbnd", x2, "x2", 4, "constant"); Checktype("intfminbnd", param, "options", 5, "list"); if(nbvar==0) then errmsg = msprintf(gettext("%s: x1 cannot be an empty"), "intfminbnd"); error(errmsg); end ///////////////// To check vectors ///////////////// Checkvector("intfminbnd", x1, "x1", 3, nbvar) x1 = x1(:); Checkvector("intfminbnd", x2, "x2", 4, nbvar) x2 = x2(:); Checkvector("intfminbnd", intcon, "intcon", 2, size(intcon,"*")) intcon = intcon(:); if(~isequal(size(x1),size(x2))) then errmsg = msprintf(gettext("%s: x1 and x2 should be of same size"), "intfminbnd"); error(errmsg); end for i=1:size(intcon,1) if(intcon(i)>nbvar) then errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfminbnd"); error(errmsg); end if (intcon(i)<0) then errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfminbnd"); error(errmsg); end if(modulo(intcon(i),1)) then errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfminbnd"); error(errmsg); end end options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off") //Pushing param into default value for i = 1:(size(param))/2 select convstr(param(2*i-1),'l') case 'integertolerance' then Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); options(2) = param(2*i); case 'maxnodes' then Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); options(4) = options(2*i); case 'cputime' then Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); options(6) = options(2*i); case 'allowablegap' then Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); options(8) = options(2*i); case 'maxiter' then Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); options(10) = options(2*i); case 'gradobj' then Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string"); if(convstr(options(2*i),'l') == "on") then options(12) = "on" elseif(convstr(options(2*i),'l') == "off") then options(12) = "off" else error(999, 'Unknown string passed in gradobj.'); end case 'hessian' then Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string"); if(convstr(options(2*i),'l') == "on") then options(14) = "on"; elseif(convstr(options(2*i),'l') == "off") then options(14) = "off"; else error(999, 'Unknown string passed in hessian.'); end else error(999, 'Unknown string argument passed.'); end end ///////////////// Functions Check ///////////////// //To check the match between f (1st Parameter) and x1 (2nd Parameter) if(execstr('init=fun(x1)','errcatch')==21) then errmsg = msprintf(gettext("%s: Objective function and x1 did not match"), "intfminbnd"); error(errmsg); end if(options(12) == "on") then if(execstr('[grad_y,grad_dy]=fun(x1)','errcatch')==59) then errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminbnd"); error(errmsg); end Checkvector("intfminbnd_options", grad_dy, "dy", 12, nbvar); end if(options(14) == "on") then if(execstr('[hessian_y,hessian_dy,hessian]=fun(x1)','errcatch')==59) then errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminbnd"); error(errmsg); end if ( ~isequal(size(hessian) == [nbvar nbvar]) ) then errmsg = msprintf(gettext("%s: Size of hessian should be nbvar X nbvar"), "intfminbnd"); error(errmsg); end end //Converting the User defined Objective function into Required form (Error Detectable) function [y,check] = _f(x) try y=fun(x) [y,check] = checkIsreal(y) catch y=0; check=1; end endfunction //Defining a function to calculate Hessian if the respective user entry is OFF function [hessy,check]=_gradhess(x) if (options(14) == "on") then try [obj,dy,hessy] = fun(x) [hessy,check] = checkIsreal(hessy) catch hessy = 0; check=1; end else try [dy,hessy]=numderivative(fun,x) [hessy,check] = checkIsreal(hessy) catch hessy=0; check=1; end end endfunction //Defining an inbuilt Objective gradient function function [dy,check] = _gradf(x) if (options(12) =="on") then try [y,dy]=fun(x) [dy,check] = checkIsreal(dy) catch dy = 0; check=1; end else try dy=numderivative(fun,x) [dy,check] = checkIsreal(dy) catch dy=0; check=1; end end endfunction intconsize = size(intcon,"*"); [xopt,fopt,exitflag] = inter_fminbnd(_f,_gradf,_gradhess,x1,x2,intcon,options,nbvar); //In the cases of the problem not being solved, return NULL to the output matrices if( exitflag~=0 & exitflag~=3 ) then gradient = []; hessian = []; else [ gradient, hessian] = numderivative(_f, xopt, [], [], "blockmat"); end //To print output message select exitflag case 0 then printf("\nOptimal Solution Found.\n"); case 1 then printf("\nInFeasible Solution.\n"); case 2 then printf("\nnObjective Function is Continuous Unbounded.\n"); case 3 then printf("\Limit Exceeded.\n"); case 4 then printf("\nUser Interrupt.\n"); case 5 then printf("\nMINLP Error.\n"); else printf("\nInvalid status returned. Notify the Toolbox authors\n"); break; end endfunction function [y, check] = checkIsreal(x) if ((~isreal(x))) then y = 0 check=1; else y = x; check=0; end endfunction