// Copyright (C) 2016 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in #ifndef minconTMINLP_HPP #define minconTMINLP_HPP #include "BonTMINLP.hpp" #include "IpTNLP.hpp" #include "call_scilab.h" using namespace Ipopt; using namespace Bonmin; class minconTMINLP : public TMINLP { private: Index numVars_; //Number of variables Index numCons_; //Number of constraints Index numLC_; //Number of Linear constraints Index intconSize_; Number *x0_= NULL; //lb_ is a pointer to a matrix of size of 1*numVars_ with lower bound of all variables. Number *lb_= NULL; //lb_ is a pointer to a matrix of size of 1*numVars_ with lower bound of all variables. Number *ub_= NULL; //ub_ is a pointer to a matrix of size of 1*numVars_ with upper bound of all variables. Number *conLb_= NULL; //conLb_ is a pointer to a matrix of size of numCon_*1 with lower bound of all constraints. Number *conUb_= NULL; //conUb_ is a pointer to a matrix of size of numCon_*1 with upper bound of all constraints. Number *finalX_= NULL; //finalX_ is a pointer to a matrix of size of 1*numVars_ with final value for the primal variables. Number finalObjVal_; //finalObjVal_ is a scalar with the final value of the objective. Number *intcon_ = NULL; int status_; //Solver return status minconTMINLP(const minconTMINLP&); minconTMINLP& operator=(const minconTMINLP&); public: // Constructor minconTMINLP(Index nV, Number *x0, Number *lb, Number *ub, Index nLC, Index nCons, Number *conlb, Number *conub, Index intconSize, Number *intcon):numVars_(nV),x0_(x0),lb_(lb),ub_(ub),numLC_(nLC),numCons_(nCons),conLb_(conlb),conUb_(conub),intconSize_(intconSize),intcon_(intcon),finalX_(0),finalObjVal_(1e20){ } /** default destructor */ virtual ~minconTMINLP(); virtual bool get_variables_types(Index n, VariableType* var_types); virtual bool get_variables_linearity(Index n, Ipopt::TNLP::LinearityType* var_types); virtual bool get_constraints_linearity(Index m, Ipopt::TNLP::LinearityType* const_types); /** Method to return some info about the nlp */ virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, TNLP::IndexStyleEnum& index_style); /** Method to return the bounds for my problem */ virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u); /** Method to return the starting point for the algorithm */ virtual bool get_starting_point(Index n, bool init_x, Number* x, bool init_z, Number* z_L, Number* z_U, Index m, bool init_lambda, Number* lambda); /** Method to return the objective value */ virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value); /** Method to return the gradient of the objective */ virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f); /** Method to return the constraint residuals */ virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g); /** Method to return: * 1) The structure of the jacobian (if "values" is NULL) * 2) The values of the jacobian (if "values" is not NULL) */ virtual bool eval_jac_g(Index n, const Number* x, bool new_x,Index m, Index nele_jac, Index* iRow, Index *jCol,Number* values); /** Method to return: * 1) The structure of the hessian of the lagrangian (if "values" is NULL) * 2) The values of the hessian of the lagrangian (if "values" is not NULL) */ virtual bool eval_h(Index n, const Number* x, bool new_x,Number obj_factor, Index m, const Number* lambda,bool new_lambda, Index nele_hess, Index* iRow,Index* jCol, Number* values); /** This method is called when the algorithm is complete so the TNLP can store/write the solution */ virtual void finalize_solution(SolverReturn status,Index n, const Number* x, Number obj_value); virtual const SosInfo * sosConstraints() const{return NULL;} virtual const BranchingInfo* branchingInfo() const{return NULL;} const double * getX(); //Returns a pointer to a matrix of size of 1*numVars_ //with final value for the primal variables. const double * getGrad(); //Returns a pointer to a matrix of size of 1*numVars_ //with final value of gradient for the primal variables. const double * getHess(); //Returns a pointer to a matrix of size of numVars_*numVars_ //with final value of hessian for the primal variables. double getObjVal(); //Returns the output of the final value of the objective. double iterCount(); //Returns the iteration count int returnStatus(); //Returns the status count }; #endif