// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Authors: Animesh Baranawal
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [x,fval,maxfval,exitflag] = intfminimax(varargin)
// Solves minimax constraint problem
//
// Calling Sequence
// xopt = intfminimax(fun,x0,intcon)
// xopt = intfminimax(fun,x0,intcon,A,b)
// xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq)
// xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub)
// xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub,nonlinfun)
// xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub,nonlinfun,options)
// [xopt, fval] = intfminimax(.....)
// [xopt, fval, maxfval]= intfminimax(.....)
// [xopt, fval, maxfval, exitflag]= intfminimax(.....)
//
// Parameters
// fun: The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x.
// x0 : a vector of double, contains initial guess of variables.
// A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// intcon : a vector of integers, represents which variables are constrained to be integers
// b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
// nonlinfun: function that computes the nonlinear inequality constraints c⋅x ≤ 0 and nonlinear equality constraints c⋅x = 0.
// xopt : a vector of double, the computed solution of the optimization problem.
// fopt : a double, the value of the function at x.
// maxfval: a 1x1 matrix of doubles, the maximum value in vector fval
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// intfminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
//
//
// \min_{x} \max_{i} F_{i}(x)\: \textrm{such that} \:\begin{cases}
// & c(x) \leq 0 \\
// & ceq(x) = 0 \\
// & A.x \leq b \\
// & Aeq.x = beq \\
// & lb \leq x \leq ub
// & x_i \in \!\, \mathbb{Z}, i \in \!\, I
// \end{cases}
//
//
// Currently, intfminimax calls intfmincon which uses the bonmin algorithm.
//
// max-min problems can also be solved with intfminimax, using the identity
//
//
// \max_{x} \min_{i} F_{i}(x) = -\min_{x} \max_{i} \left( -F_{i}(x) \right)
//
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
//
// Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
// IntegerTolerance : a Scalar, a number with that value of an integer is considered integer..
// MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search.
// CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
// AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached.
// MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
// gradobj : a string, to turn on or off the user supplied objective gradient.
// hessian : a Scalar, to turn on or off the user supplied objective hessian.
// Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
//
// The objective function must have header :
//
// F = fun(x)
//
// where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F.
// On input, the variable x contains the current point and, on output, the variable F must contain the objective function values.
//
// By default, the gradient options for intfminimax are turned off and and intfmincon does the gradient opproximation of objective function. In case the GradObj option is off and GradConstr option is on, intfminimax approximates Objective function gradient using numderivative toolbox.
//
// If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
//
//
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
//
// exitflag=0 : Optimal Solution Found
// exitflag=1 : InFeasible Solution.
// exitflag=2 : Objective Function is Continuous Unbounded.
// exitflag=3 : Limit Exceeded.
// exitflag=4 : User Interrupt.
// exitflag=5 : MINLP Error.
//
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/bonmin/
//
// Examples
// // A basic case :
// // we provide only the objective function and the nonlinear constraint
// // function
// function f = myfun(x)
// f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304; //Objectives
// f(2)= -x(1)^2 - 3*x(2)^2;
// f(3)= x(1) + 3*x(2) -18;
// f(4)= -x(1) - x(2);
// f(5)= x(1) + x(2) - 8;
// endfunction
// // The initial guess
// x0 = [0.1,0.1];
// // The expected solution : only 4 digits are guaranteed
// xopt = [4 4]
// fopt = [0 -64 -2 -8 0]
// intcon = [1]
// maxfopt = 0
// // Run fminimax
// [x,fval,maxfval,exitflag] = intfminimax(myfun, x0,intcon)
// // Press ENTER to continue
//
// Examples
// // A case where we provide the gradient of the objective
// // functions and the Jacobian matrix of the constraints.
// // The objective function and its gradient
// function [f,G] = myfun(x)
// f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;
// f(2)= -x(1)^2 - 3*x(2)^2;
// f(3)= x(1) + 3*x(2) -18;
// f(4)= -x(1) - x(2);
// f(5)= x(1) + x(2) - 8;
// G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1;
// 2*x(2) - 40, -6*x(2), 3, -1, 1; ]'
// endfunction
// // The nonlinear constraints
// function [c,ceq,DC,DCeq] = confun(x)
// // Inequality constraints
// c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10]
// // No nonlinear equality constraints
// ceq=[]
// DC= [x(2)-1, -x(2);
// x(1)-1, -x(1)]'
// DCeq = []'
// endfunction
// // Test with both gradient of objective and gradient of constraints
// minimaxOptions = list("GradObj","on","GradCon","on");
// // The initial guess
// x0 = [0,10];
// intcon = [2]
// // Run intfminimax
// [x,fval,maxfval,exitflag] = intfminimax(myfun,x0,intcon,[],[],[],[],[],[], confun, minimaxOptions)
// Authors
// Harpreet Singh
// Check number of input and output arguments
[minmaxLhs,minmaxRhs] = argn()
Checkrhs("fminimax", minmaxRhs, [2 3 5 7 9 10 11])
Checklhs("fminimax", minmaxLhs, 1:7)
// Proper initialisation of objective function
minmaxObjfun = varargin(1)
Checktype("fminimax", minmaxObjfun, "minmaxObjfun", 1, "function")
// Proper initialisation of starting point
minmaxStartpoint = varargin(2)
Checktype("fminimax", minmaxStartpoint, "minmaxStartpoint", 2, "constant")
minmaxNumvar = size(minmaxStartpoint,"*")
Checkvector("fminimax", minmaxStartpoint, "minmaxStartpoint", 2, minmaxNumvar)
minmaxStartpoint = minmaxStartpoint(:)
if(minmaxRhs < 3) then // if A and b are not provided, declare as empty
intcon = 0;
else
intcon = varargin(3);
end
// Proper initialisation of A and b
if(minmaxRhs < 4) then // if A and b are not provided, declare as empty
minmaxA = []
minmaxB = []
else
minmaxA = varargin(4)
minmaxB = varargin(5)
end
Checktype("fminimax", minmaxA, "A", 4, "constant")
Checktype("fminimax", minmaxB, "b", 5, "constant")
// Check if A and b of proper dimensions
if(minmaxA <> [] & minmaxB == []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix A is empty, but the column vector b is not empty"), "fminimax", 4, 5)
error(errmsg)
end
if(minmaxA == [] & minmaxB <> []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix A is not empty, but the column vector b is empty"), "fminimax", 4, 5)
error(errmsg)
end
minmaxNumrowA = size(minmaxA,"r")
if(minmaxA <> []) then
Checkdims("fminimax", minmaxA, "A", 4, [minmaxNumrowA minmaxNumvar])
Checkvector("fminimax", minmaxB, "b", 5, minmaxNumrowA)
minmaxB = minmaxB(:)
end
// Proper initialisation of Aeq and beq
if(minmaxRhs < 6) then // if Aeq and beq are not provided, declare as empty
minmaxAeq = []
minmaxBeq = []
else
minmaxAeq = varargin(6)
minmaxBeq = varargin(7)
end
Checktype("fminimax", minmaxAeq, "Aeq", 6, "constant")
Checktype("fminimax", minmaxBeq, "beq", 7, "constant")
// Check if Aeq and beq of proper dimensions
if(minmaxAeq <> [] & minmaxBeq == []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix Aeq is empty, but the column vector beq is not empty"), "fminimax", 6, 7)
error(errmsg)
end
if(minmaxAeq == [] & minmaxBeq <> []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix Aeq is not empty, but the column vector beq is empty"), "fminimax", 6, 7)
error(errmsg)
end
minmaxNumrowAeq = size(minmaxAeq,"r")
if(minmaxAeq <> []) then
Checkdims("fminimax", minmaxAeq, "Aeq", 6, [minmaxNumrowAeq minmaxNumvar])
Checkvector("fminimax", minmaxBeq, "beq", 7, minmaxNumrowAeq)
minmaxBeq = minmaxBeq(:)
end
// Proper initialisation of minmaxLb and minmaxUb
if(minmaxRhs < 6) then // if minmaxLb and minmaxUb are not provided, declare as empty
minmaxLb = []
minmaxUb = []
else
minmaxLb = varargin(6)
minmaxUb = varargin(7)
end
Checktype("fminimax", minmaxLb, "lb", 6, "constant")
Checktype("fminimax", minmaxUb, "ub", 7, "constant")
// Check dimensions of minmaxLb and minmaxUb
if(minmaxLb <> []) then
Checkvector("fminimax", minmaxLb, "lb", 8, minmaxNumvar)
minmaxLb = minmaxLb(:)
end
if(minmaxUb <> []) then
Checkvector("fminimax", minmaxUb, "ub", 9, minmaxNumvar)
minmaxUb = minmaxUb(:)
end
// Proper Initialisation of minmaxNonlinfun
if(minmaxRhs < 10) then // if minmaxNonlinfun is not provided, declare as empty
minmaxNonlinfun = []
else
minmaxNonlinfun = varargin(10)
end
if(minmaxNonlinfun<>[]) then
Checktype("fminimax", minmaxNonlinfun, "nonlinfun", 10, "function")
end
//To check, Whether minimaxOptions is been entered by user
if ( minmaxRhs<11 ) then
minmaxUserOptions = list();
else
minmaxUserOptions = varargin(11); //Storing the 3rd Input minmaxUserOptionseter in intermediate list named 'minmaxUserOptions'
end
//If minimaxOptions is entered then checking its type for 'list'
if (type(minmaxUserOptions) ~= 15) then
errmsg = msprintf(gettext("%s: minimaxOptions (10th parameter) should be a list"), "fminimax");
error(errmsg);
end
//If minimaxOptions is entered then checking whether even number of entires are entered
if (modulo(size(minmaxUserOptions),2)) then
errmsg = msprintf(gettext("%s: Size of minimaxOptions (list) should be even"), "fminimax");
error(errmsg);
end
/////////////// To check integer //////////////////////
for i=1:size(intcon,1)
if(intcon(i)>minmaxNumvar) then
errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfminimax");
error(errmsg);
end
if (intcon(i)<0) then
errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfminimax");
error(errmsg);
end
if(modulo(intcon(i),1)) then
errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfminimax");
error(errmsg);
end
end
//If minimaxOptions is entered then checking its type for 'list'
if (type(minmaxUserOptions) ~= 15) then
errmsg = msprintf(gettext("%s: minimaxOptions (10th parameter) should be a list"), "intfminimax");
error(errmsg);
end
//If minimaxOptions is entered then checking whether even number of entires are entered
if (modulo(size(minmaxUserOptions),2)) then
errmsg = msprintf(gettext("%s: Size of minimaxOptions (list) should be even"), "intfminimax");
error(errmsg);
end
minmaxoptions = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'gradcon',"off")
//Pushing minmaxUserOptions into default value
for i = 1:(size(minmaxUserOptions))/2
select convstr(minmaxUserOptions(2*i-1),'l')
case 'integertolerance' then
Checktype("intfminimax_options", minmaxUserOptions(2*i), minmaxUserOptions(2*i-1), 2*i, "constant");
minmaxoptions(2) = minmaxUserOptions(2*i);
case 'maxnodes' then
Checktype("intfminimax_options", minmaxUserOptions(2*i), minmaxUserOptions(2*i-1), 2*i, "constant");
minmaxoptions(4) = minmaxUserOptions(2*i);
case 'cputime' then
Checktype("intfminimax_options", minmaxUserOptions(2*i), minmaxUserOptions(2*i-1), 2*i, "constant");
minmaxoptions(6) = minmaxUserOptions(2*i);
case 'allowablegap' then
Checktype("intfminimax_options", minmaxUserOptions(2*i), minmaxUserOptions(2*i-1), 2*i, "constant");
minmaxoptions(8) = minmaxUserOptions(2*i);
case 'maxiter' then
Checktype("intfminimax_options", minmaxUserOptions(2*i), minmaxUserOptions(2*i-1), 2*i, "constant");
minmaxoptions(10) = minmaxUserOptions(2*i);
case 'gradobj' then
Checktype("intfminimax_options", minmaxUserOptions(2*i), minmaxUserOptions(2*i-1), 2*i, "string");
if(convstr(minmaxUserOptions(2*i),'l') == "on") then
minmaxoptions(12) = "on"
elseif(convstr(minmaxUserOptions(2*i),'l') == "off") then
minmaxoptions(12) = "off"
else
error(999, 'Unknown string passed in gradobj.');
end
case 'gradcon' then
Checktype("intfminimax_options", minmaxUserOptions(2*i), minmaxUserOptions(2*i-1), 2*i, "string");
if(convstr(minmaxUserOptions(2*i),'l') == "on") then
minmaxoptions(14) = "on"
elseif(convstr(minmaxUserOptions(2*i),'l') == "off") then
minmaxoptions(14) = "off"
else
error(999, 'Unknown string passed in gradcon.');
end
else
error(999, 'Unknown string argument passed.');
end
end
// Reformulating the problem fminimax to fmincon
minmaxObjfunval = minmaxObjfun(minmaxStartpoint)
minmaxStartpoint(minmaxNumvar+1) = max(minmaxObjfunval)
if(minmaxA <> []) then
minmaxA = [minmaxA, zeros(minmaxNumrowA,1)]
end
if(minmaxAeq <> []) then
minmaxAeq = [minmaxAeq, zeros(minmaxNumrowAeq,1)]
end
if(minmaxLb <> []) then
minmaxLb(minmaxNumvar+1) = -%inf
end
if(minmaxUb <> []) then
minmaxUb(minmaxNumvar+1) = +%inf
end
// function handle defining the additional inequalities
function temp = minmaxAddIneq(z)
temp = minmaxObjfun(z) - z(minmaxNumvar+1)
endfunction
// function handle defining minmaxNonlinfun derivative using numderivative
function [dc,dceq] = minmaxNonlinDer(z)
// function handle extracting c and ceq components from minmaxNonlinfun
function foo = minmaxC(z)
[foo,tmp1] = minmaxNonlinfun(z)
foo = foo'
endfunction
function foo = minmaxCEQ(z)
[tmp1,foo] = minmaxNonlinfun(z)
foo = foo'
endfunction
dc = numderivative(minmaxC,z)
dceq = numderivative(minmaxCEQ,z)
endfunction
// function handle defining new objective function
function newfunc = newObjfun(z)
newfunc = z(minmaxNumvar+1)
endfunction
// function handle defining new minmaxNonlinfun function
function [nc,nceq,dnc,dnceq] = newNonlinfun(z)
dnc = [];
dnceq = [];
nc = [];
nceq= [];
if (minmaxNonlinfun<>[]) then
[nc,nceq] = minmaxNonlinfun(z)
end
// add inequalities of the form Fi(x) - y <= 0
tmp = [minmaxObjfun(z) - z(minmaxNumvar+1)]'
nc = [nc, tmp]
if(options(14) =="on") then
[temp1,temp2,dnc, dnceq] = minmaxNonlinfun(z)
dnc = [dnc, zeros(size(dnc,'r'),1)]
dnceq = [dnceq, zeros(size(dnceq,'r'),1)]
else
// else use numderivative method to calculate gradient of constraints
if (minmaxNonlinfun<>[]) then
[dnc, dnceq] = minmaxNonlinDer(z)
end
end
if(options(12) =="on") then
[temp,derObjfun] = minmaxObjfun(z);
mderObjfun = [derObjfun, -1*ones(size(derObjfun,'r'),1)];
dnc = [dnc; mderObjfun];
else
// else use numderivative to calculate gradient of set of obj functions
derObjfun = numderivative(minmaxAddIneq,z)
dnc = [dnc; derObjfun]
end
endfunction
if( minmaxoptions(12)=="on"| minmaxoptions(12)="on") then
options(14)="on";
end
minmaxoptions(12)="off";
[x,fval,exitflag,gradient,hessian] = ...
intfmincon(newObjfun,minmaxStartpoint,intcon,minmaxA,minmaxB,minmaxAeq,minmaxBeq,minmaxLb,minmaxUb,newNonlinfun,minmaxoptions)
x = x(1:minmaxNumvar)
fval = minmaxObjfun(x)
maxfval = max(fval)
endfunction