From 4b64cf486f5c999fd8167758cae27839f3b50848 Mon Sep 17 00:00:00 2001
From: Harpreet
Date: Sat, 3 Sep 2016 00:34:27 +0530
Subject: Structure updated and intqpipopt files added
---
newstructure/help/builder_help.sce | 21 ++
newstructure/help/en_US/build_help.sce | 17 +
newstructure/help/en_US/cbcintlinprog.xml | 206 ++++++++++++
newstructure/help/en_US/intfminbnd.xml | 185 +++++++++++
newstructure/help/en_US/intfmincon.xml | 291 +++++++++++++++++
newstructure/help/en_US/intfminimax.xml | 221 +++++++++++++
newstructure/help/en_US/intfminunc.xml | 170 ++++++++++
newstructure/help/en_US/intqpipopt.xml | 166 ++++++++++
newstructure/help/en_US/master_help.xml | 33 ++
.../en_US/scilab_en_US_help/JavaHelpSearch/DOCS | Bin 0 -> 2197 bytes
.../scilab_en_US_help/JavaHelpSearch/DOCS.TAB | 4 +
.../en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS | Bin 0 -> 38 bytes
.../scilab_en_US_help/JavaHelpSearch/POSITIONS | Bin 0 -> 9643 bytes
.../en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA | 2 +
.../en_US/scilab_en_US_help/JavaHelpSearch/TMAP | Bin 0 -> 10240 bytes
.../help/en_US/scilab_en_US_help/ScilabCaution.png | Bin 0 -> 513 bytes
.../help/en_US/scilab_en_US_help/ScilabEdit.png | Bin 0 -> 414 bytes
.../help/en_US/scilab_en_US_help/ScilabExecute.png | Bin 0 -> 535 bytes
.../en_US/scilab_en_US_help/ScilabImportant.png | Bin 0 -> 637 bytes
.../help/en_US/scilab_en_US_help/ScilabNote.png | Bin 0 -> 687 bytes
.../help/en_US/scilab_en_US_help/ScilabTip.png | Bin 0 -> 687 bytes
.../help/en_US/scilab_en_US_help/ScilabWarning.png | Bin 0 -> 513 bytes
.../_LaTeX_cbcintlinprog.xml_1.png | Bin 0 -> 3436 bytes
.../scilab_en_US_help/_LaTeX_intfminbnd.xml_1.png | Bin 0 -> 1792 bytes
.../scilab_en_US_help/_LaTeX_intfmincon.xml_1.png | Bin 0 -> 4330 bytes
.../scilab_en_US_help/_LaTeX_intfminimax.xml_1.png | Bin 0 -> 5068 bytes
.../scilab_en_US_help/_LaTeX_intfminimax.xml_2.png | Bin 0 -> 1295 bytes
.../scilab_en_US_help/_LaTeX_intfminunc.xml_1.png | Bin 0 -> 1223 bytes
.../scilab_en_US_help/_LaTeX_intqpipopt.xml_1.png | Bin 0 -> 3961 bytes
.../help/en_US/scilab_en_US_help/c_code.css | 54 ++++
.../en_US/scilab_en_US_help/cbcintlinprog.html | 205 ++++++++++++
.../help/en_US/scilab_en_US_help/index.html | 85 +++++
.../help/en_US/scilab_en_US_help/intfminbnd.html | 170 ++++++++++
.../help/en_US/scilab_en_US_help/intfmincon.html | 266 ++++++++++++++++
.../help/en_US/scilab_en_US_help/intfminimax.html | 195 ++++++++++++
.../help/en_US/scilab_en_US_help/intfminunc.html | 159 ++++++++++
.../help/en_US/scilab_en_US_help/intqpipopt.html | 151 +++++++++
.../help/en_US/scilab_en_US_help/jhelpidx.xml | 3 +
.../help/en_US/scilab_en_US_help/jhelpmap.jhm | 12 +
.../help/en_US/scilab_en_US_help/jhelpset.hs | 28 ++
.../help/en_US/scilab_en_US_help/jhelptoc.xml | 14 +
.../help/en_US/scilab_en_US_help/scilab_code.css | 96 ++++++
.../section_2f30ec7805b02b8760d8add3187208be.html | 85 +++++
.../help/en_US/scilab_en_US_help/style.css | 350 +++++++++++++++++++++
.../help/en_US/scilab_en_US_help/xml_code.css | 94 ++++++
45 files changed, 3283 insertions(+)
create mode 100644 newstructure/help/builder_help.sce
create mode 100644 newstructure/help/en_US/build_help.sce
create mode 100644 newstructure/help/en_US/cbcintlinprog.xml
create mode 100644 newstructure/help/en_US/intfminbnd.xml
create mode 100644 newstructure/help/en_US/intfmincon.xml
create mode 100644 newstructure/help/en_US/intfminimax.xml
create mode 100644 newstructure/help/en_US/intfminunc.xml
create mode 100644 newstructure/help/en_US/intqpipopt.xml
create mode 100644 newstructure/help/en_US/master_help.xml
create mode 100644 newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
create mode 100644 newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
create mode 100644 newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
create mode 100644 newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
create mode 100644 newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
create mode 100644 newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
create mode 100644 newstructure/help/en_US/scilab_en_US_help/ScilabCaution.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/ScilabEdit.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/ScilabExecute.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/ScilabImportant.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/ScilabNote.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/ScilabTip.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/ScilabWarning.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/_LaTeX_cbcintlinprog.xml_1.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminbnd.xml_1.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfmincon.xml_1.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_1.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_2.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminunc.xml_1.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/_LaTeX_intqpipopt.xml_1.png
create mode 100644 newstructure/help/en_US/scilab_en_US_help/c_code.css
create mode 100644 newstructure/help/en_US/scilab_en_US_help/cbcintlinprog.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/index.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/intfminbnd.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/intfmincon.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/intfminimax.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/intfminunc.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/intqpipopt.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/jhelpidx.xml
create mode 100644 newstructure/help/en_US/scilab_en_US_help/jhelpmap.jhm
create mode 100644 newstructure/help/en_US/scilab_en_US_help/jhelpset.hs
create mode 100644 newstructure/help/en_US/scilab_en_US_help/jhelptoc.xml
create mode 100644 newstructure/help/en_US/scilab_en_US_help/scilab_code.css
create mode 100644 newstructure/help/en_US/scilab_en_US_help/section_2f30ec7805b02b8760d8add3187208be.html
create mode 100644 newstructure/help/en_US/scilab_en_US_help/style.css
create mode 100644 newstructure/help/en_US/scilab_en_US_help/xml_code.css
(limited to 'newstructure/help')
diff --git a/newstructure/help/builder_help.sce b/newstructure/help/builder_help.sce
new file mode 100644
index 0000000..ebff2b3
--- /dev/null
+++ b/newstructure/help/builder_help.sce
@@ -0,0 +1,21 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// Author: Harpreet Singh
+// Organization: FOSSEE, IIT Bombay
+// Email: harpreet.mertia@gmail.com
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+
+mode(-1)
+lines(0)
+
+toolbox_title = "FOSSEE_Optimization_Toolbox"
+
+help_dir = get_absolute_file_path('builder_help.sce');
+
+tbx_builder_help_lang("en_US", help_dir);
+
+clear toolbox_title;
diff --git a/newstructure/help/en_US/build_help.sce b/newstructure/help/en_US/build_help.sce
new file mode 100644
index 0000000..493a4c5
--- /dev/null
+++ b/newstructure/help/en_US/build_help.sce
@@ -0,0 +1,17 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// Author: Harpreet Singh
+// Organization: FOSSEE, IIT Bombay
+// Email: harpreet.mertia@gmail.com
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+
+help_lang_dir = get_absolute_file_path('build_help.sce');
+
+tbx_build_help(TOOLBOX_TITLE, help_lang_dir);
+
+clear help_lang_dir;
+
diff --git a/newstructure/help/en_US/cbcintlinprog.xml b/newstructure/help/en_US/cbcintlinprog.xml
new file mode 100644
index 0000000..f487135
--- /dev/null
+++ b/newstructure/help/en_US/cbcintlinprog.xml
@@ -0,0 +1,206 @@
+
+
+
+
+
+
+
+ cbcintlinprog
+ Solves a mixed integer linear programming constrained optimization problem in intlinprog format.
+
+
+
+
+ Calling Sequence
+
+ xopt = cbcintlinprog(c,intcon,A,b)
+ xopt = cbcintlinprog(c,intcon,A,b,Aeq,beq)
+ xopt = cbcintlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
+ xopt = cbcintlinprog(c,intcon,A,b,Aeq,beq,lb,ub,options)
+ xopt = cbcintlinprog('path_to_mps_file')
+ xopt = cbcintlinprog('path_to_mps_file',options)
+ [xopt,fopt,status,output] = cbcintlinprog( ... )
+
+
+
+
+
+ Parameters
+
+ c :
+ a vector of double, contains coefficients of the variables in the objective
+ intcon :
+ Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the // components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.
+ A :
+ a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ b :
+ a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ Aeq :
+ a matrix of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ beq :
+ a vector of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ lb :
+ Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
+ ub :
+ Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
+ options :
+ a list containing the parameters to be set.
+ xopt :
+ a vector of double, the computed solution of the optimization problem.
+ fopt :
+ a double, the value of the function at x.
+ status :
+ status flag returned from symphony. See below for details.
+ output :
+ The output data structure contains detailed information about the optimization process. See below for details.
+
+
+
+
+ Description
+
+Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
+
+
+
+\begin{eqnarray}
+&\mbox{min}_{x}
+& C^Tâ‹…x \\
+& \text{subject to} & Aâ‹…x \leq b \\
+& & Aeqâ‹…x = beq \\
+& & lb \leq x \leq ub \\
+& & x_i \in \!\, \mathbb{Z}, i \in \!\, intcon\\
+\end{eqnarray}
+
+
+
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Authors
+
+ Akshay Miterani and Pranav Deshpande
+
+
+
diff --git a/newstructure/help/en_US/intfminbnd.xml b/newstructure/help/en_US/intfminbnd.xml
new file mode 100644
index 0000000..8ff8004
--- /dev/null
+++ b/newstructure/help/en_US/intfminbnd.xml
@@ -0,0 +1,185 @@
+
+
+
+
+
+
+
+ intfminbnd
+ Solves a multi-variable optimization problem on a bounded interval
+
+
+
+
+ Calling Sequence
+
+ xopt = intfminbnd(f,intcon,x1,x2)
+ xopt = intfminbnd(f,intcon,x1,x2,options)
+ [xopt,fopt] = intfminbnd(.....)
+ [xopt,fopt,exitflag]= intfminbnd(.....)
+ [xopt,fopt,exitflag,output]=intfminbnd(.....)
+ [xopt,fopt,exitflag,gradient,hessian]=intfminbnd(.....)
+
+
+
+
+
+ Parameters
+
+ f :
+ a function, representing the objective function of the problem
+ x1 :
+ a vector, containing the lower bound of the variables.
+ x2 :
+ a vector, containing the upper bound of the variables.
+ intcon :
+ a vector of integers, represents which variables are constrained to be integers
+ options :
+ a list, containing the option for user to specify. See below for details.
+ xopt :
+ a vector of doubles, containing the the computed solution of the optimization problem.
+ fopt :
+ a scalar of double, containing the the function value at x.
+ exitflag :
+ a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+ gradient :
+ a vector of doubles, containing the Objective's gradient of the solution.
+ hessian :
+ a matrix of doubles, containing the Objective's hessian of the solution.
+
+
+
+
+ Description
+
+Search the minimum of a multi-variable function on bounded interval specified by :
+Find the minimum of f(x) such that
+
+
+
+\begin{eqnarray}
+&\mbox{min}_{x}
+& f(x)\\
+& \text{subject to} & x1 \ < x \ < x2 \\
+\end{eqnarray}
+
+
+
+The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++.
+
+
+The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
+Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
+IntegerTolerance : a Scalar, a number with that value of an integer is considered integer..
+MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search.
+CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
+AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached.
+MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
+gradobj : a string, to turn on or off the user supplied objective gradient.
+hessian : a Scalar, to turn on or off the user supplied objective hessian.
+Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
+
+
+
+The exitflag allows to know the status of the optimization which is given back by Ipopt.
+
+exitflag=0 : Optimal Solution Found
+exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.
+exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.
+exitflag=3 : Stop at Tiny Step.
+exitflag=4 : Solved To Acceptable Level.
+exitflag=5 : Converged to a point of local infeasibility.
+
+
+
+For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin
+
+
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Authors
+
+ Harpreet Singh
+
+
+
diff --git a/newstructure/help/en_US/intfmincon.xml b/newstructure/help/en_US/intfmincon.xml
new file mode 100644
index 0000000..a09a18a
--- /dev/null
+++ b/newstructure/help/en_US/intfmincon.xml
@@ -0,0 +1,291 @@
+
+
+
+
+
+
+
+ intfmincon
+ Solves a constrainted multi-variable mixed integer non linear programming problem
+
+
+
+
+ Calling Sequence
+
+ xopt = intfmincon(f,x0,intcon,A,b)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+ [xopt,fopt] = intfmincon(.....)
+ [xopt,fopt,exitflag]= intfmincon(.....)
+ [xopt,fopt,exitflag,gradient]=intfmincon(.....)
+ [xopt,fopt,exitflag,gradient,hessian]=intfmincon(.....)
+
+
+
+
+
+ Parameters
+
+ f :
+ a function, representing the objective function of the problem
+ x0 :
+ a vector of doubles, containing the starting values of variables.
+ intcon :
+ a vector of integers, represents which variables are constrained to be integers
+ A :
+ a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ b :
+ a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ Aeq :
+ a matrix of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ beq :
+ a vector of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ lb :
+ Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
+ ub :
+ Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
+ nlc :
+ a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.
+ options :
+ a list, containing the option for user to specify. See below for details.
+ xopt :
+ a vector of doubles, containing the the computed solution of the optimization problem.
+ fopt :
+ a scalar of double, containing the the function value at x.
+ exitflag :
+ a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+ gradient :
+ a vector of doubles, containing the Objective's gradient of the solution.
+ hessian :
+ a matrix of doubles, containing the Objective's hessian of the solution.
+
+
+
+
+ Description
+
+Search the minimum of a mixed integer constrained optimization problem specified by :
+Find the minimum of f(x) such that
+
+
+
+\begin{eqnarray}
+&\mbox{min}_{x}
+& f(x) \\
+& \text{subject to} & A*x \leq b \\
+& & Aeq*x \ = beq\\
+& & c(x) \leq 0\\
+& & ceq(x) \ = 0\\
+& & lb \leq x \leq ub \\
+& & x_i \in \!\, \mathbb{Z}, i \in \!\, I
+\end{eqnarray}
+
+
+
+The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++.
+
+
+The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
+Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
+IntegerTolerance : a Scalar, a number with that value of an integer is considered integer..
+MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search.
+CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
+AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached.
+MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
+gradobj : a string, to turn on or off the user supplied objective gradient.
+hessian : a Scalar, to turn on or off the user supplied objective hessian.
+Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
+
+
+
+The exitflag allows to know the status of the optimization which is given back by Ipopt.
+
+exitflag=0 : Optimal Solution Found
+exitflag=1 : InFeasible Solution.
+exitflag=2 : Objective Function is Continuous Unbounded.
+exitflag=3 : Limit Exceeded.
+exitflag=4 : User Interrupt.
+exitflag=5 : MINLP Error.
+
+
+
+For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin
+
+
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Authors
+
+ Harpreet Singh
+
+
+
diff --git a/newstructure/help/en_US/intfminimax.xml b/newstructure/help/en_US/intfminimax.xml
new file mode 100644
index 0000000..13063bb
--- /dev/null
+++ b/newstructure/help/en_US/intfminimax.xml
@@ -0,0 +1,221 @@
+
+
+
+
+
+
+
+ intfminimax
+ Solves minimax constraint problem
+
+
+
+
+ Calling Sequence
+
+ xopt = intfminimax(fun,x0,intcon)
+ xopt = intfminimax(fun,x0,intcon,A,b)
+ xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq)
+ xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub)
+ xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub,nonlinfun)
+ xopt = intfminimax(fun,x0,intcon,A,b,Aeq,beq,lb,ub,nonlinfun,options)
+ [xopt, fval] = intfminimax(.....)
+ [xopt, fval, maxfval]= intfminimax(.....)
+ [xopt, fval, maxfval, exitflag]= intfminimax(.....)
+
+
+
+
+
+ Parameters
+
+ fun:
+ The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x.
+ x0 :
+ a vector of double, contains initial guess of variables.
+ A :
+ a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ intcon :
+ a vector of integers, represents which variables are constrained to be integers
+ b :
+ a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ Aeq :
+ a matrix of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ beq :
+ a vector of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ lb :
+ a vector of double, contains lower bounds of the variables.
+ ub :
+ a vector of double, contains upper bounds of the variables.
+ nonlinfun:
+ function that computes the nonlinear inequality constraints c⋅x ≤ 0 and nonlinear equality constraints c⋅x = 0.
+ xopt :
+ a vector of double, the computed solution of the optimization problem.
+ fopt :
+ a double, the value of the function at x.
+ maxfval:
+ a 1x1 matrix of doubles, the maximum value in vector fval
+ exitflag :
+ The exit status. See below for details.
+ output :
+ The structure consist of statistics about the optimization. See below for details.
+ lambda :
+ The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
+
+
+
+
+ Description
+
+intfminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
+
+
+
+\min_{x} \max_{i} F_{i}(x)\: \textrm{such that} \:\begin{cases}
+& c(x) \leq 0 \\
+& ceq(x) = 0 \\
+& A.x \leq b \\
+& Aeq.x = beq \\
+& lb \leq x \leq ub
+& x_i \in \!\, \mathbb{Z}, i \in \!\, I
+\end{cases}
+
+
+
+Currently, intfminimax calls intfmincon which uses the bonmin algorithm.
+
+
+max-min problems can also be solved with intfminimax, using the identity
+
+
+
+\max_{x} \min_{i} F_{i}(x) = -\min_{x} \max_{i} \left( -F_{i}(x) \right)
+
+
+
+The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
+Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
+IntegerTolerance : a Scalar, a number with that value of an integer is considered integer..
+MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search.
+CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
+AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached.
+MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
+gradobj : a string, to turn on or off the user supplied objective gradient.
+hessian : a Scalar, to turn on or off the user supplied objective hessian.
+Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
+
+The objective function must have header :
+
+F = fun(x)
+
+where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F.
+On input, the variable x contains the current point and, on output, the variable F must contain the objective function values.
+
+
+By default, the gradient options for intfminimax are turned off and and intfmincon does the gradient opproximation of objective function. In case the GradObj option is off and GradConstr option is on, intfminimax approximates Objective function gradient using numderivative toolbox.
+
+
+If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
+
+
+
+
+The exitflag allows to know the status of the optimization which is given back by Ipopt.
+
+exitflag=0 : Optimal Solution Found
+exitflag=1 : InFeasible Solution.
+exitflag=2 : Objective Function is Continuous Unbounded.
+exitflag=3 : Limit Exceeded.
+exitflag=4 : User Interrupt.
+exitflag=5 : MINLP Error.
+
+
+
+For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/bonmin/
+
+
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Authors
+
+ Harpreet Singh
+
+
+
diff --git a/newstructure/help/en_US/intfminunc.xml b/newstructure/help/en_US/intfminunc.xml
new file mode 100644
index 0000000..ce55272
--- /dev/null
+++ b/newstructure/help/en_US/intfminunc.xml
@@ -0,0 +1,170 @@
+
+
+
+
+
+
+
+ intfminunc
+ Solves an unconstrainted multi-variable mixed integer non linear programming optimization problem
+
+
+
+
+ Calling Sequence
+
+ xopt = intfminunc(f,x0)
+ xopt = intfminunc(f,x0,intcon)
+ xopt = intfminunc(f,x0,intcon,options)
+ [xopt,fopt] = intfminunc(.....)
+ [xopt,fopt,exitflag]= intfminunc(.....)
+ [xopt,fopt,exitflag,gradient,hessian]= intfminunc(.....)
+
+
+
+
+
+ Parameters
+
+ f :
+ a function, representing the objective function of the problem
+ x0 :
+ a vector of doubles, containing the starting of variables.
+ intcon :
+ a vector of integers, represents which variables are constrained to be integers
+ options:
+ a list, containing the option for user to specify. See below for details.
+ xopt :
+ a vector of doubles, the computed solution of the optimization problem.
+ fopt :
+ a scalar of double, the function value at x.
+ exitflag :
+ a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+ gradient :
+ a vector of doubles, containing the Objective's gradient of the solution.
+ hessian :
+ a matrix of doubles, containing the Objective's hessian of the solution.
+
+
+
+
+ Description
+
+Search the minimum of a multi-variable mixed integer non linear programming unconstrained optimization problem specified by :
+Find the minimum of f(x) such that
+
+
+
+\begin{eqnarray}
+&\mbox{min}_{x}
+& f(x)
+& x_i \in \!\, \mathbb{Z}, i \in \!\, I
+\end{eqnarray}
+
+
+
+The routine calls Bonmin for solving the Un-constrained Optimization problem, Bonmin is a library written in C++.
+
+
+The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
+Syntax : options= list("IntegerTolerance", [---], "MaxNodes", [---], "CpuTime", [---], "AllowableGap", [---], "MaxIter", [---]);
+IntegerTolerance : a Scalar, containing the Integer tolerance value that the solver should take.
+MaxNodes : a Scalar, containing the maximum nodes that the solver should make.
+MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
+AllowableGap : a Scalar, containing the allowable gap value that the solver should take.
+CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
+gradobj : a string, to turn on or off the user supplied objective gradient.
+hessian : a Scalar, to turn on or off the user supplied objective hessian.
+Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
+
+
+
+The exitflag allows to know the status of the optimization which is given back by Bonmin.
+
+exitflag=0 : Optimal Solution Found.
+exitflag=1 : InFeasible Solution.
+exitflag=2 : Output is Continuous Unbounded.
+exitflag=3 : Limit Exceeded.
+exitflag=4 : User Interrupt.
+exitflag=5 : MINLP Error.
+
+
+
+For more details on exitflag see the Bonmin page, go to http://www.coin-or.org/Bonmin
+
+
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
diff --git a/newstructure/help/en_US/intqpipopt.xml b/newstructure/help/en_US/intqpipopt.xml
new file mode 100644
index 0000000..2093a73
--- /dev/null
+++ b/newstructure/help/en_US/intqpipopt.xml
@@ -0,0 +1,166 @@
+
+
+
+
+
+
+
+ intqpipopt
+ Solves a linear quadratic problem.
+
+
+
+
+ Calling Sequence
+
+ xopt = intqpipopt(H,f)
+ xopt = intqpipopt(H,f,intcon)
+ xopt = intqpipopt(H,f,intcon,A,b)
+ xopt = intqpipopt(H,f,intcon,A,b,Aeq,beq)
+ xopt = intqpipopt(H,f,intcon,A,b,Aeq,beq,lb,ub)
+ xopt = intqpipopt(H,f,intcon,A,b,Aeq,beq,lb,ub,x0)
+ xopt = intqpipopt(H,f,intcon,A,b,Aeq,beq,lb,ub,x0,options)
+ xopt = intqpipopt(H,f,intcon,A,b,Aeq,beq,lb,ub,x0,options,"file_path")
+ [xopt,fopt,exitflag,output] = intqpipopt( ... )
+
+
+
+
+
+ Parameters
+
+ H :
+ a symmetric matrix of double, represents coefficients of quadratic in the quadratic problem.
+ f :
+ a vector of double, represents coefficients of linear in the quadratic problem
+ intcon :
+ a vector of integers, represents which variables are constrained to be integers
+ A :
+ a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ b :
+ a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ Aeq :
+ a matrix of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ beq :
+ a vector of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+ lb :
+ a vector of double, contains lower bounds of the variables.
+ ub :
+ a vector of double, contains upper bounds of the variables.
+ x0 :
+ a vector of double, contains initial guess of variables.
+ options :
+ a list containing the parameters to be set.
+ file_path :
+ path to bonmin opt file if used.
+ xopt :
+ a vector of double, the computed solution of the optimization problem.
+ fopt :
+ a double, the value of the function at x.
+ exitflag :
+ The exit status. See below for details.
+ output :
+ The structure consist of statistics about the optimization. See below for details.
+
+
+
+
+ Description
+
+Search the minimum of a constrained linear quadratic optimization problem specified by :
+
+
+
+\begin{eqnarray}
+&\mbox{min}_{x}
+& 1/2â‹…x^Tâ‹…Hâ‹…x + f^Tâ‹…x \\
+& \text{subject to} & Aâ‹…x \leq b \\
+& & Aeqâ‹…x = beq \\
+& & lb \leq x \leq ub \\
+& & x_i \in \!\, \mathbb{Z}, i \in \!\, intcon\\
+\end{eqnarray}
+
+
+
+The routine calls Bonmin for solving the quadratic problem, Bonmin is a library written in C++.
+
+
+The exitflag allows to know the status of the optimization which is given back by Bonmin.
+
+exitflag=0 : Optimal Solution Found.
+exitflag=1 : InFeasible Solution.
+exitflag=2 : Output is Continuous Unbounded.
+exitflag=3 : Limit Exceeded.
+exitflag=4 : User Interrupt.
+exitflag=5 : MINLP Error.
+
+
+
+For more details on exitflag see the Bonmin page, go to http://www.coin-or.org/Bonmin
+
+
+The output data structure contains detailed informations about the optimization process.
+It has type "struct" and contains the following fields.
+
+output.constrviolation: The max-norm of the constraint violation.
+
+
+
+
+
+
+
+ Examples
+
+
+
+
+ Examples
+
+
+
+
+ Authors
+
+ Akshay Miterani and Pranav Deshpande
+
+
+
diff --git a/newstructure/help/en_US/master_help.xml b/newstructure/help/en_US/master_help.xml
new file mode 100644
index 0000000..ee61d08
--- /dev/null
+++ b/newstructure/help/en_US/master_help.xml
@@ -0,0 +1,33 @@
+
+
+
+
+
+
+
+
+
+]>
+
+
+ FOSSEE Optimization Toolbox
+
+
+
+FOSSEE Optimization Toolbox
+&a9329a0d53661bb2d81d90b27f1c88ca0;
+&a6fbb041a3f7f80f35d8aeed18b3c9747;
+&a0f250752f9f8370f313a4a7e9ff6ad3f;
+&a257444ebcd118cf85c2ba7a95473117c;
+&a3691830d1b123907d1dfab057ceb7548;
+&adccedc981fc40a046b9fa80097caa93d;
+
+
diff --git a/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
new file mode 100644
index 0000000..a125d6d
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
new file mode 100644
index 0000000..83471ed
--- /dev/null
+++ b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
@@ -0,0 +1,4 @@
+eÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeÿÿý×ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý×ÿÿÿö_ÿÿÿÿÿÙÿÿÿÿÿÿÿö_ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ@2‹Ìªª/2ªªŠ2ªªªŠ2*Œ¨®0£*ª/2ªª‹£*/ï2ª*¨Â£
+ªó
+¨ÂŒ(ÂŒ.¿0¼ÂªªŒ¨¯ìª0ªªºº0¾ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªºªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª«ªªªªªªªªªªªªªªªªªªªªªªªªªªªªª»0¨Âÿ2,ÂóÌ,ÂÿÌ/Ì,Âÿÿó"üÂÌ/2‹ó0¿ÿÿÿÿÿÿ2‹0£
+ª®Œ,Ê.êÿóÌ.ª2ª.úú»úªºº¾ª®ªªªþºªªªªªªªªªªªªªªªªª¦
\ No newline at end of file
diff --git a/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
new file mode 100644
index 0000000..074d3e3
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
new file mode 100644
index 0000000..784ccb6
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
new file mode 100644
index 0000000..6740d1a
--- /dev/null
+++ b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
@@ -0,0 +1,2 @@
+JavaSearch 1.0
+TMAP bs=2048 rt=1 fl=-1 id1=916 id2=1
diff --git a/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
new file mode 100644
index 0000000..062a5d6
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/ScilabCaution.png b/newstructure/help/en_US/scilab_en_US_help/ScilabCaution.png
new file mode 100644
index 0000000..8edb56e
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/ScilabCaution.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/ScilabEdit.png b/newstructure/help/en_US/scilab_en_US_help/ScilabEdit.png
new file mode 100644
index 0000000..e139988
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/ScilabEdit.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/ScilabExecute.png b/newstructure/help/en_US/scilab_en_US_help/ScilabExecute.png
new file mode 100644
index 0000000..4acd4b9
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/ScilabExecute.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/ScilabImportant.png b/newstructure/help/en_US/scilab_en_US_help/ScilabImportant.png
new file mode 100644
index 0000000..3b51020
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/ScilabImportant.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/ScilabNote.png b/newstructure/help/en_US/scilab_en_US_help/ScilabNote.png
new file mode 100644
index 0000000..ed46c3e
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/ScilabNote.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/ScilabTip.png b/newstructure/help/en_US/scilab_en_US_help/ScilabTip.png
new file mode 100644
index 0000000..ed46c3e
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/ScilabTip.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/ScilabWarning.png b/newstructure/help/en_US/scilab_en_US_help/ScilabWarning.png
new file mode 100644
index 0000000..8edb56e
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/ScilabWarning.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/_LaTeX_cbcintlinprog.xml_1.png b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_cbcintlinprog.xml_1.png
new file mode 100644
index 0000000..257c49b
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_cbcintlinprog.xml_1.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminbnd.xml_1.png b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminbnd.xml_1.png
new file mode 100644
index 0000000..2634ce3
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminbnd.xml_1.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfmincon.xml_1.png b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfmincon.xml_1.png
new file mode 100644
index 0000000..5b7d818
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfmincon.xml_1.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_1.png b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_1.png
new file mode 100644
index 0000000..e332d78
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_1.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_2.png b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_2.png
new file mode 100644
index 0000000..6a9edc4
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminimax.xml_2.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminunc.xml_1.png b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminunc.xml_1.png
new file mode 100644
index 0000000..a0ce708
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intfminunc.xml_1.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intqpipopt.xml_1.png b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intqpipopt.xml_1.png
new file mode 100644
index 0000000..6e4fffd
Binary files /dev/null and b/newstructure/help/en_US/scilab_en_US_help/_LaTeX_intqpipopt.xml_1.png differ
diff --git a/newstructure/help/en_US/scilab_en_US_help/c_code.css b/newstructure/help/en_US/scilab_en_US_help/c_code.css
new file mode 100644
index 0000000..948d2ee
--- /dev/null
+++ b/newstructure/help/en_US/scilab_en_US_help/c_code.css
@@ -0,0 +1,54 @@
+.ccomment {
+ font-style: italic;
+ color: #b22222
+}
+
+.cdefault {
+ font-style: normal;
+ color: #000000
+}
+
+.copenclose {
+ font-style: normal;
+ color: #000000
+}
+
+.coperator {
+ font-style: normal;
+ color: #000000
+}
+
+.cstring {
+ font-style: normal;
+ color: #a6557a
+}
+
+.ctype {
+ font-style: normal;
+ color: #55a655
+}
+
+.cpreprocessor {
+ font-style: normal;
+ color: #9965a6
+}
+
+.cid {
+ font-style: normal;
+ color: #000000
+}
+
+.ckeyword {
+ font-style: normal;
+ color: #ad3ff2
+}
+
+.cmodifier {
+ font-style: normal;
+ color: #ad3ff2
+}
+
+.cnumber {
+ font-style: normal;
+ color: #008b8b
+}
diff --git a/newstructure/help/en_US/scilab_en_US_help/cbcintlinprog.html b/newstructure/help/en_US/scilab_en_US_help/cbcintlinprog.html
new file mode 100644
index 0000000..03640bb
--- /dev/null
+++ b/newstructure/help/en_US/scilab_en_US_help/cbcintlinprog.html
@@ -0,0 +1,205 @@
+
a vector of double, contains coefficients of the variables in the objective
+
intcon :
+
Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the // components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.
+
A :
+
a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+
b :
+
a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+
Aeq :
+
a matrix of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+
beq :
+
a vector of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+
lb :
+
Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
+
ub :
+
Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
+
options :
+
a list containing the parameters to be set.
+
xopt :
+
a vector of double, the computed solution of the optimization problem.
+
fopt :
+
a double, the value of the function at x.
+
status :
+
status flag returned from symphony. See below for details.
+
output :
+
The output data structure contains detailed information about the optimization process. See below for details.
+
+
Description
+
Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
+
+
+
+
Examples
+
// Objective function
+// Reference: Westerberg, Carl-Henrik, Bengt Bjorklund, and Eskil Hultman. "An application of mixed integer programming in a Swedish steel mill." Interfaces 7, no. 2 (1977): 39-43.
+c=[350*5,330*3,310*4,280*6,500,450,400,100]';
+// Lower Bound of variable
+lb=repmat(0,1,8);
+// Upper Bound of variables
+ub=[repmat(1,1,4)repmat(%inf,1,4)];
+// Constraint Matrix
+Aeq=[5,3,4,6,1,1,1,1;
+5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
+5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
+beq=[25,1.25,1.25]
+intcon=[1234];
+// Calling Symphony
+[x,f,status,output]=cbcintlinprog(c,intcon,[],[],Aeq,beq,lb,ub)
+// Press ENTER to continue
+
+
Examples
+
// An advanced case where we set some options in symphony
+// This problem is taken from
+// P.C.Chu and J.E.Beasley
+// "A genetic algorithm for the multidimensional knapsack problem",
+// Journal of Heuristics, vol. 4, 1998, pp63-86.
+// The problem to be solved is:
+// Max sum{j=1,...,n} p(j)x(j)
+// st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
+// x(j)=0 or 1
+// The function to be maximize i.e. P(j)
+c=-1*[5048036671103834585811856690832846813868793..
+82510028606155407976166607078666477461006608..
+87790057378848485394263059163064011699321034..
+95779866962546710515527176543885595551104783..
+959668507855986831821825868852832828799686..
+51067157574051067599663682610221140654909799..
+11626538146255994767679549069046498735658531008632]';
+// Constraint Matrix
+A=[//Constraint 1
+424152321581955169193582375367478162898..
+550553298577493183260224852394958282402604..
+16430821861273772191117276877415873902465..
+32087024478186622665155680101665227597354..
+5977916299884913611275173588471449266420..
+797945746464454588272383714987183731301..
+71891109567708507983808766615554282995946651298;
+//Constraint 2
+509883229569706639114727491481681948687941..
+35025357340124384660951739329146593658816..
+638717779289430851937289159260930248656833..
+8926027874129796786249354614836290893857..
+15886920650479975843158078078858364132653..
+252709129368440314287854460594512239719751..
+708670269832137356960651398893407477552805881850;
+//Constraint 3
+806361199781596669957358259888319751275177..
+88374922926528269481977190551140442867283..
+137359445584401924857448449695083357877..
+482732968113486710439747174260877474841422..
+280684330910791322404403519148948414894147..
+732979765138067582973143732624518847113..
+38297905398859414211011213398173106331254447;
+//Constraint 4
+4041978171000443073965946334448599931776..
+263980807378278841700210542636388129203110..
+817502657804662989585645113436610948919115..
+96713445449740592327167368335179909825614..
+98735017941582152577428342727565939273896..
+6898269742124667264973119151498388695846..
+68920641714735267822977302687118990323993525322;
+//Constraint 5
+4753628757745700803654196844657387518143..
+515335942701332803265922908139995845487100..
+44765364973842447542592679547136801904740..
+768460766605009158972571655772696653933..
+4205828108617586472376312719175756409440..
+4833367656379819802023559468960276767693..
+893160785311417748375362617553474915457261350635;
+];
+nbVar=size(c,1);
+b=[1192713727115511305613460];
+// Lower Bound of variables
+lb=repmat(0,1,nbVar);
+// Upper Bound of variables
+ub=repmat(1,1,nbVar);
+// Lower Bound of constrains
+intcon=[];
+fori=1:nbVar
+intcon=[intconi];
+end
+options=list('MaxTime',25);
+// The expected solution :
+// Output variables
+xopt=[0110010101000000010000101101101..
+0000000000010000010000001000011..
+0010010100100101000001100000110010010];
+// Optimal value
+fopt=[24381]
+// Calling cbc
+[x,f,status,output]=cbcintlinprog(c,intcon,A,b,[],[],lb,ub,options);
a function, representing the objective function of the problem
+
x1 :
+
a vector, containing the lower bound of the variables.
+
x2 :
+
a vector, containing the upper bound of the variables.
+
intcon :
+
a vector of integers, represents which variables are constrained to be integers
+
options :
+
a list, containing the option for user to specify. See below for details.
+
xopt :
+
a vector of doubles, containing the the computed solution of the optimization problem.
+
fopt :
+
a scalar of double, containing the the function value at x.
+
exitflag :
+
a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+
gradient :
+
a vector of doubles, containing the Objective's gradient of the solution.
+
hessian :
+
a matrix of doubles, containing the Objective's hessian of the solution.
+
+
Description
+
Search the minimum of a multi-variable function on bounded interval specified by :
+Find the minimum of f(x) such that
+
+
The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++.
+
The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
The exitflag allows to know the status of the optimization which is given back by Ipopt.
+
exitflag=0 : Optimal Solution Found
+
exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.
+
exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.
+
exitflag=3 : Stop at Tiny Step.
+
exitflag=4 : Solved To Acceptable Level.
+
exitflag=5 : Converged to a point of local infeasibility.
+
For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin
+
+
+
Examples
+
//Find x in R^6 such that it minimizes:
+//f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
+//-2 <= x1,x2,x3,x4,x5,x6 <= 2
+//Objective function to be minimised
+functiony=f(x)
+y=0
+fori=1:6
+y=y+sin(x(i));
+end
+endfunction
+//Variable bounds
+x1=[-2,-2,-2,-2,-2,-2];
+x2=[2,2,2,2,2,2];
+intcon=[234]
+//Options
+options=list("MaxIter",[1500],"CpuTime",[100])
+[x,fval]=intfminbnd(f,intcon,x1,x2,options)
+// Press ENTER to continue
+
+
Examples
+
//Find x in R such that it minimizes:
+//f(x)= 1/x^2
+//0 <= x <= 1000
+//Objective function to be minimised
+functiony=f(x)
+y=1/x^2;
+endfunction
+//Variable bounds
+x1=[0];
+x2=[1000];
+intcon=[1];
+[x,fval,exitflag,output,lambda]=intfminbnd(f,intcon,x1,x2)
+// Press ENTER to continue
+
+
Examples
+
//The below problem is an unbounded problem:
+//Find x in R^2 such that it minimizes:
+//f(x)= -[(x1-1)^2 + (x2-1)^2]
+//-inf <= x1,x2 <= inf
+//Objective function to be minimised
+functiony=f(x)
+y=-((x(1)-1)^2+(x(2)-1)^2);
+endfunction
+//Variable bounds
+x1=[-%inf,-%inf];
+x2=[%inf,%inf];
+//Options
+options=list("MaxIter",[1500],"CpuTime",[100])
+[x,fval,exitflag,output,lambda]=intfminbnd(f,intcon,x1,x2,options)
a function, representing the objective function of the problem
+
x0 :
+
a vector of doubles, containing the starting values of variables.
+
intcon :
+
a vector of integers, represents which variables are constrained to be integers
+
A :
+
a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+
b :
+
a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+
Aeq :
+
a matrix of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+
beq :
+
a vector of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+
lb :
+
Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
+
ub :
+
Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
+
nlc :
+
a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.
+
options :
+
a list, containing the option for user to specify. See below for details.
+
xopt :
+
a vector of doubles, containing the the computed solution of the optimization problem.
+
fopt :
+
a scalar of double, containing the the function value at x.
+
exitflag :
+
a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+
gradient :
+
a vector of doubles, containing the Objective's gradient of the solution.
+
hessian :
+
a matrix of doubles, containing the Objective's hessian of the solution.
+
+
Description
+
Search the minimum of a mixed integer constrained optimization problem specified by :
+Find the minimum of f(x) such that
+
+
The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++.
+
The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
The exitflag allows to know the status of the optimization which is given back by Ipopt.
+
exitflag=0 : Optimal Solution Found
+
exitflag=1 : InFeasible Solution.
+
exitflag=2 : Objective Function is Continuous Unbounded.
+
exitflag=3 : Limit Exceeded.
+
exitflag=4 : User Interrupt.
+
exitflag=5 : MINLP Error.
+
For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin
+
+
+
Examples
+
//Find x in R^2 such that it minimizes:
+//f(x)= -x1 -x2/3
+//x0=[0,0]
+//constraint-1 (c1): x1 + x2 <= 2
+//constraint-2 (c2): x1 + x2/4 <= 1
+//constraint-3 (c3): x1 - x2 <= 2
+//constraint-4 (c4): -x1/4 - x2 <= 1
+//constraint-5 (c5): -x1 - x2 <= -1
+//constraint-6 (c6): -x1 + x2 <= 2
+//constraint-7 (c7): x1 + x2 = 2
+//Objective function to be minimised
+function[y, dy]=f(x)
+y=-x(1)-x(2)/3;
+dy=[-1,-1/3];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0,0];
+intcon=[1]
+A=[1,1;1,1/4;1,-1;-1/4,-1;-1,-1;-1,1];
+b=[2;1;2;1;-1;2];
+Aeq=[1,1];
+beq=[2];
+lb=[];
+ub=[];
+nlc=[];
+//Options
+options=list("GradObj","on");
+//Calling Ipopt
+[x,fval,exitflag,grad,hessian]=intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+
+
Examples
+
//Find x in R^3 such that it minimizes:
+//f(x)= x1*x2 + x2*x3
+//x0=[0.1 , 0.1 , 0.1]
+//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
+//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
+//Objective function to be minimised
+function[y, dy]=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+dy=[x(2),x(1)+x(3),x(2)];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1,0.1,0.1];
+intcon=[2]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[];
+//Nonlinear constraints
+function[c, ceq, cg, cgeq]=nlc(x)
+c=[x(1)^2-x(2)^2+x(3)^2-2,x(1)^2+x(2)^2+x(3)^2-10];
+ceq=[];
+cg=[2*x(1),-2*x(2),2*x(3);2*x(1),2*x(2),2*x(3)];
+cgeq=[];
+endfunction
+//Options
+options=list("MaxIter",[1500],"CpuTime",[500],"GradObj","on","GradCon","on");
+//Calling Ipopt
+[x,fval,exitflag,output]=intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+
+
Examples
+
//The below problem is an unbounded problem:
+//Find x in R^3 such that it minimizes:
+//f(x)= -(x1^2 + x2^2 + x3^2)
+//x0=[0.1 , 0.1 , 0.1]
+// x1 <= 0
+// x2 <= 0
+// x3 <= 0
+//Objective function to be minimised
+functiony=f(x)
+y=-(x(1)^2+x(2)^2+x(3)^2);
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1,0.1,0.1];
+intcon=[3]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[0,0,0];
+//Options
+options=list("MaxIter",[1500],"CpuTime",[500]);
+//Calling Ipopt
+[x,fval,exitflag,grad,hessian]=intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,[],options)
+// Press ENTER to continue
+
+
Examples
+
//The below problem is an infeasible problem:
+//Find x in R^3 such that in minimizes:
+//f(x)=x1*x2 + x2*x3
+//x0=[1,1,1]
+//constraint-1 (c1): x1^2 <= 1
+//constraint-2 (c2): x1^2 + x2^2 <= 1
+//constraint-3 (c3): x3^2 <= 1
+//constraint-4 (c4): x1^3 = 0.5
+//constraint-5 (c5): x2^2 + x3^2 = 0.75
+// 0 <= x1 <=0.6
+// 0.2 <= x2 <= inf
+// -inf <= x3 <= 1
+//Objective function to be minimised
+function[y, dy]=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+dy=[x(2),x(1)+x(3),x(2)];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[1,1,1];
+intcon=[2]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[00.2,-%inf];
+ub=[0.6%inf,1];
+//Nonlinear constraints
+function[c, ceq, cg, cgeq]=nlc(x)
+c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
+ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
+cg=[2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
+cgeq=[3*x(1)^2,0,0;0,2*x(2),2*x(3)];
+endfunction
+//Options
+options=list("MaxIter",[1500],"CpuTime",[500],"GradObj","on","GradCon","on");
+//Calling Ipopt
+[x,fval,exitflag,grad,hessian]=intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x.
+
x0 :
+
a vector of double, contains initial guess of variables.
+
A :
+
a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+
intcon :
+
a vector of integers, represents which variables are constrained to be integers
+
b :
+
a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+
Aeq :
+
a matrix of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+
beq :
+
a vector of double, represents the linear coefficients in the equality constraints Aeqâ‹…x = beq.
+
lb :
+
a vector of double, contains lower bounds of the variables.
+
ub :
+
a vector of double, contains upper bounds of the variables.
+
nonlinfun:
+
function that computes the nonlinear inequality constraints c⋅x ≤ 0 and nonlinear equality constraints c⋅x = 0.
+
xopt :
+
a vector of double, the computed solution of the optimization problem.
+
fopt :
+
a double, the value of the function at x.
+
maxfval:
+
a 1x1 matrix of doubles, the maximum value in vector fval
+
exitflag :
+
The exit status. See below for details.
+
output :
+
The structure consist of statistics about the optimization. See below for details.
+
lambda :
+
The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
+
+
Description
+
intfminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
+
+
Currently, intfminimax calls intfmincon which uses the bonmin algorithm.
+
max-min problems can also be solved with intfminimax, using the identity
+
+
The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
+where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F.
+On input, the variable x contains the current point and, on output, the variable F must contain the objective function values.
+
By default, the gradient options for intfminimax are turned off and and intfmincon does the gradient opproximation of objective function. In case the GradObj option is off and GradConstr option is on, intfminimax approximates Objective function gradient using numderivative toolbox.
+
If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
+
+
The exitflag allows to know the status of the optimization which is given back by Ipopt.
+
exitflag=0 : Optimal Solution Found
+
exitflag=1 : InFeasible Solution.
+
exitflag=2 : Objective Function is Continuous Unbounded.
+
exitflag=3 : Limit Exceeded.
+
exitflag=4 : User Interrupt.
+
exitflag=5 : MINLP Error.
+
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/bonmin/
+
+
+
Examples
+
// A basic case :
+// we provide only the objective function and the nonlinear constraint
+// function
+functionf=myfun(x)
+f(1)=2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304;//Objectives
+f(2)=-x(1)^2-3*x(2)^2;
+f(3)=x(1)+3*x(2)-18;
+f(4)=-x(1)-x(2);
+f(5)=x(1)+x(2)-8;
+endfunction
+// The initial guess
+x0=[0.1,0.1];
+// The expected solution : only 4 digits are guaranteed
+xopt=[44]
+fopt=[0-64-2-80]
+intcon=[1]
+maxfopt=0
+// Run fminimax
+[x,fval,maxfval,exitflag]=intfminimax(myfun,x0,intcon)
+// Press ENTER to continue
+
+
Examples
+
// A case where we provide the gradient of the objective
+// functions and the Jacobian matrix of the constraints.
+// The objective function and its gradient
+function[f, G]=myfun(x)
+f(1)=2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304;
+f(2)=-x(1)^2-3*x(2)^2;
+f(3)=x(1)+3*x(2)-18;
+f(4)=-x(1)-x(2);
+f(5)=x(1)+x(2)-8;
+G=[4*x(1)-48,-2*x(1),1,-1,1;
+2*x(2)-40,-6*x(2),3,-1,1;]'
+endfunction
+// The nonlinear constraints
+function[c, ceq, DC, DCeq]=confun(x)
+// Inequality constraints
+c=[1.5+x(1)*x(2)-x(1)-x(2),-x(1)*x(2)-10]
+// No nonlinear equality constraints
+ceq=[]
+DC=[x(2)-1,-x(2);
+x(1)-1,-x(1)]'
+DCeq=[]'
+endfunction
+// Test with both gradient of objective and gradient of constraints
+minimaxOptions=list("GradObj","on","GradCon","on");
+// The initial guess
+x0=[0,10];
+intcon=[2]
+// Run intfminimax
+[x,fval,maxfval,exitflag]=intfminimax(myfun,x0,intcon,[],[],[],[],[],[],confun,minimaxOptions)
a function, representing the objective function of the problem
+
x0 :
+
a vector of doubles, containing the starting of variables.
+
intcon :
+
a vector of integers, represents which variables are constrained to be integers
+
options:
+
a list, containing the option for user to specify. See below for details.
+
xopt :
+
a vector of doubles, the computed solution of the optimization problem.
+
fopt :
+
a scalar of double, the function value at x.
+
exitflag :
+
a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+
gradient :
+
a vector of doubles, containing the Objective's gradient of the solution.
+
hessian :
+
a matrix of doubles, containing the Objective's hessian of the solution.
+
+
Description
+
Search the minimum of a multi-variable mixed integer non linear programming unconstrained optimization problem specified by :
+Find the minimum of f(x) such that
+
+
The routine calls Bonmin for solving the Un-constrained Optimization problem, Bonmin is a library written in C++.
+
The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+
The exitflag allows to know the status of the optimization which is given back by Bonmin.
+
exitflag=0 : Optimal Solution Found.
+
exitflag=1 : InFeasible Solution.
+
exitflag=2 : Output is Continuous Unbounded.
+
exitflag=3 : Limit Exceeded.
+
exitflag=4 : User Interrupt.
+
exitflag=5 : MINLP Error.
+
For more details on exitflag see the Bonmin page, go to http://www.coin-or.org/Bonmin
+
+
+
Examples
+
//Find x in R^2 such that it minimizes the Rosenbrock function
+//f = 100*(x2 - x1^2)^2 + (1-x1)^2
+//Objective function to be minimised
+functiony=f(x)
+y=100*(x(2)-x(1)^2)^2+(1-x(1))^2;
+endfunction
+//Starting point
+x0=[-1,2];
+intcon=[2]
+//Options
+options=list("MaxIter",[1500],"CpuTime",[500]);
+//Calling
+[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
+// Press ENTER to continue
+
+
Examples
+
//Find x in R^2 such that the below function is minimum
+//f = x1^2 + x2^2
+//Objective function to be minimised
+functiony=f(x)
+y=x(1)^2+x(2)^2;
+endfunction
+//Starting point
+x0=[2,1];
+intcon=[1];
+[xopt,fopt]=intfminunc(f,x0,intcon)
+// Press ENTER to continue
+
+
Examples
+
//The below problem is an unbounded problem:
+//Find x in R^2 such that the below function is minimum
+//f = - x1^2 - x2^2
+//Objective function to be minimised
+function[y, g, h]=f(x)
+y=-x(1)^2-x(2)^2;
+g=[-2*x(1),-2*x(2)];
+h=[-2,0;0,-2];
+endfunction
+//Starting point
+x0=[2,1];
+intcon=[1]
+options=list("gradobj","ON","hessian","on");
+[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)