summaryrefslogtreecommitdiff
path: root/newstructure/demos
diff options
context:
space:
mode:
Diffstat (limited to 'newstructure/demos')
-rw-r--r--newstructure/demos/cbcintlinprog.dem.sce104
-rw-r--r--newstructure/demos/intfminbnd.dem.sce55
-rw-r--r--newstructure/demos/intfmincon.dem.sce136
-rw-r--r--newstructure/demos/intfminimax.dem.sce57
-rw-r--r--newstructure/demos/intfminunc.dem.sce49
-rw-r--r--newstructure/demos/intqpipopt.dem.sce32
-rw-r--r--newstructure/demos/matrix_cbcintlinprog.sci296
-rw-r--r--newstructure/demos/mps_cbcintlinprog.sci79
-rw-r--r--newstructure/demos/sci_FOSSEE_Optimization_Toolbox.dem.gateway.sce16
9 files changed, 824 insertions, 0 deletions
diff --git a/newstructure/demos/cbcintlinprog.dem.sce b/newstructure/demos/cbcintlinprog.dem.sce
new file mode 100644
index 0000000..e04946a
--- /dev/null
+++ b/newstructure/demos/cbcintlinprog.dem.sce
@@ -0,0 +1,104 @@
+mode(1)
+//
+// Demo of cbcintlinprog.sci
+//
+
+// Objective function
+// Reference: Westerberg, Carl-Henrik, Bengt Bjorklund, and Eskil Hultman. "An application of mixed integer programming in a Swedish steel mill." Interfaces 7, no. 2 (1977): 39-43.
+c = [350*5,330*3,310*4,280*6,500,450,400,100]';
+// Lower Bound of variable
+lb = repmat(0,1,8);
+// Upper Bound of variables
+ub = [repmat(1,1,4) repmat(%inf,1,4)];
+// Constraint Matrix
+Aeq = [5,3,4,6,1,1,1,1;
+5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
+5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
+beq = [ 25, 1.25, 1.25]
+intcon = [1 2 3 4];
+// Calling Symphony
+[x,f,status,output] = cbcintlinprog(c,intcon,[],[],Aeq,beq,lb,ub)
+// Press ENTER to continue
+halt() // Press return to continue
+
+// An advanced case where we set some options in symphony
+// This problem is taken from
+// P.C.Chu and J.E.Beasley
+// "A genetic algorithm for the multidimensional knapsack problem",
+// Journal of Heuristics, vol. 4, 1998, pp63-86.
+// The problem to be solved is:
+// Max sum{j=1,...,n} p(j)x(j)
+// st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
+// x(j)=0 or 1
+// The function to be maximize i.e. P(j)
+c = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
+825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
+877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
+957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
+959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
+510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
+1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
+// Constraint Matrix
+A = [ //Constraint 1
+42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
+550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
+164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
+320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
+597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
+797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
+718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
+//Constraint 2
+509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
+350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
+638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
+892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
+158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
+252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
+708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
+//Constraint 3
+806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
+883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
+137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
+482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
+280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
+73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
+382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
+//Constraint 4
+404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
+263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
+817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
+967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
+987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
+68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
+689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
+//Constraint 5
+475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
+515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
+447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
+768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
+420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
+483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
+893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
+];
+nbVar = size(c,1);
+b=[11927 13727 11551 13056 13460 ];
+// Lower Bound of variables
+lb = repmat(0,1,nbVar);
+// Upper Bound of variables
+ub = repmat(1,1,nbVar);
+// Lower Bound of constrains
+intcon = [];
+for i = 1:nbVar
+intcon = [intcon i];
+end
+options = list('MaxTime', 25);
+// The expected solution :
+// Output variables
+xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
+0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 ..
+0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0];
+// Optimal value
+fopt = [ 24381 ]
+// Calling cbc
+[x,f,status,output] = cbcintlinprog(c,intcon,A,b,[],[],lb,ub,options);
+//========= E N D === O F === D E M O =========//
diff --git a/newstructure/demos/intfminbnd.dem.sce b/newstructure/demos/intfminbnd.dem.sce
new file mode 100644
index 0000000..adbc9fa
--- /dev/null
+++ b/newstructure/demos/intfminbnd.dem.sce
@@ -0,0 +1,55 @@
+mode(1)
+//
+// Demo of intfminbnd.sci
+//
+
+//Find x in R^6 such that it minimizes:
+//f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
+//-2 <= x1,x2,x3,x4,x5,x6 <= 2
+//Objective function to be minimised
+function y=f(x)
+y=0
+for i =1:6
+y=y+sin(x(i));
+end
+endfunction
+//Variable bounds
+x1 = [-2, -2, -2, -2, -2, -2];
+x2 = [2, 2, 2, 2, 2, 2];
+intcon = [2 3 4]
+//Options
+options=list("MaxIter",[1500],"CpuTime", [100])
+[x,fval] =intfminbnd(f ,intcon, x1, x2, options)
+// Press ENTER to continue
+halt() // Press return to continue
+
+//Find x in R such that it minimizes:
+//f(x)= 1/x^2
+//0 <= x <= 1000
+//Objective function to be minimised
+function y=f(x)
+y=1/x^2;
+endfunction
+//Variable bounds
+x1 = [0];
+x2 = [1000];
+intcon = [1];
+[x,fval,exitflag,output,lambda] =intfminbnd(f,intcon , x1, x2)
+// Press ENTER to continue
+halt() // Press return to continue
+
+//The below problem is an unbounded problem:
+//Find x in R^2 such that it minimizes:
+//f(x)= -[(x1-1)^2 + (x2-1)^2]
+//-inf <= x1,x2 <= inf
+//Objective function to be minimised
+function y=f(x)
+y=-((x(1)-1)^2+(x(2)-1)^2);
+endfunction
+//Variable bounds
+x1 = [-%inf , -%inf];
+x2 = [ %inf , %inf];
+//Options
+options=list("MaxIter",[1500],"CpuTime", [100])
+[x,fval,exitflag,output,lambda] =intfminbnd(f,intcon, x1, x2, options)
+//========= E N D === O F === D E M O =========//
diff --git a/newstructure/demos/intfmincon.dem.sce b/newstructure/demos/intfmincon.dem.sce
new file mode 100644
index 0000000..ef43b4b
--- /dev/null
+++ b/newstructure/demos/intfmincon.dem.sce
@@ -0,0 +1,136 @@
+mode(1)
+//
+// Demo of intfmincon.sci
+//
+
+//Find x in R^2 such that it minimizes:
+//f(x)= -x1 -x2/3
+//x0=[0,0]
+//constraint-1 (c1): x1 + x2 <= 2
+//constraint-2 (c2): x1 + x2/4 <= 1
+//constraint-3 (c3): x1 - x2 <= 2
+//constraint-4 (c4): -x1/4 - x2 <= 1
+//constraint-5 (c5): -x1 - x2 <= -1
+//constraint-6 (c6): -x1 + x2 <= 2
+//constraint-7 (c7): x1 + x2 = 2
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=-x(1)-x(2)/3;
+dy= [-1,-1/3];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0 , 0];
+intcon = [1]
+A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
+b=[2;1;2;1;-1;2];
+Aeq=[1,1];
+beq=[2];
+lb=[];
+ub=[];
+nlc=[];
+//Options
+options=list("GradObj", "on");
+//Calling Ipopt
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+halt() // Press return to continue
+
+//Find x in R^3 such that it minimizes:
+//f(x)= x1*x2 + x2*x3
+//x0=[0.1 , 0.1 , 0.1]
+//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
+//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+dy= [x(2),x(1)+x(3),x(2)];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1 , 0.1 , 0.1];
+intcon = [2]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[];
+//Nonlinear constraints
+function [c,ceq,cg,cgeq]=nlc(x)
+c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
+ceq = [];
+cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
+cgeq=[];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
+//Calling Ipopt
+[x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+halt() // Press return to continue
+
+//The below problem is an unbounded problem:
+//Find x in R^3 such that it minimizes:
+//f(x)= -(x1^2 + x2^2 + x3^2)
+//x0=[0.1 , 0.1 , 0.1]
+// x1 <= 0
+// x2 <= 0
+// x3 <= 0
+//Objective function to be minimised
+function y=f(x)
+y=-(x(1)^2+x(2)^2+x(3)^2);
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1 , 0.1 , 0.1];
+intcon = [3]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[0,0,0];
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500]);
+//Calling Ipopt
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,[],options)
+// Press ENTER to continue
+halt() // Press return to continue
+
+//The below problem is an infeasible problem:
+//Find x in R^3 such that in minimizes:
+//f(x)=x1*x2 + x2*x3
+//x0=[1,1,1]
+//constraint-1 (c1): x1^2 <= 1
+//constraint-2 (c2): x1^2 + x2^2 <= 1
+//constraint-3 (c3): x3^2 <= 1
+//constraint-4 (c4): x1^3 = 0.5
+//constraint-5 (c5): x2^2 + x3^2 = 0.75
+// 0 <= x1 <=0.6
+// 0.2 <= x2 <= inf
+// -inf <= x3 <= 1
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+dy= [x(2),x(1)+x(3),x(2)];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[1,1,1];
+intcon = [2]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[0 0.2,-%inf];
+ub=[0.6 %inf,1];
+//Nonlinear constraints
+function [c,ceq,cg,cgeq]=nlc(x)
+c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
+ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
+cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
+cgeq = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
+//Calling Ipopt
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+//========= E N D === O F === D E M O =========//
diff --git a/newstructure/demos/intfminimax.dem.sce b/newstructure/demos/intfminimax.dem.sce
new file mode 100644
index 0000000..db74b92
--- /dev/null
+++ b/newstructure/demos/intfminimax.dem.sce
@@ -0,0 +1,57 @@
+mode(1)
+//
+// Demo of intfminimax.sci
+//
+
+// A basic case :
+// we provide only the objective function and the nonlinear constraint
+// function
+function f = myfun(x)
+f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304; //Objectives
+f(2)= -x(1)^2 - 3*x(2)^2;
+f(3)= x(1) + 3*x(2) -18;
+f(4)= -x(1) - x(2);
+f(5)= x(1) + x(2) - 8;
+endfunction
+// The initial guess
+x0 = [0.1,0.1];
+// The expected solution : only 4 digits are guaranteed
+xopt = [4 4]
+fopt = [0 -64 -2 -8 0]
+intcon = [1]
+maxfopt = 0
+// Run fminimax
+[x,fval,maxfval,exitflag] = intfminimax(myfun, x0,intcon)
+// Press ENTER to continue
+halt() // Press return to continue
+
+// A case where we provide the gradient of the objective
+// functions and the Jacobian matrix of the constraints.
+// The objective function and its gradient
+function [f,G] = myfun(x)
+f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;
+f(2)= -x(1)^2 - 3*x(2)^2;
+f(3)= x(1) + 3*x(2) -18;
+f(4)= -x(1) - x(2);
+f(5)= x(1) + x(2) - 8;
+G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1;
+2*x(2) - 40, -6*x(2), 3, -1, 1; ]'
+endfunction
+// The nonlinear constraints
+function [c,ceq,DC,DCeq] = confun(x)
+// Inequality constraints
+c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10]
+// No nonlinear equality constraints
+ceq=[]
+DC= [x(2)-1, -x(2);
+x(1)-1, -x(1)]'
+DCeq = []'
+endfunction
+// Test with both gradient of objective and gradient of constraints
+minimaxOptions = list("GradObj","on","GradCon","on");
+// The initial guess
+x0 = [0,10];
+intcon = [2]
+// Run intfminimax
+[x,fval,maxfval,exitflag] = intfminimax(myfun,x0,intcon,[],[],[],[],[],[], confun, minimaxOptions)
+//========= E N D === O F === D E M O =========//
diff --git a/newstructure/demos/intfminunc.dem.sce b/newstructure/demos/intfminunc.dem.sce
new file mode 100644
index 0000000..97cbb2d
--- /dev/null
+++ b/newstructure/demos/intfminunc.dem.sce
@@ -0,0 +1,49 @@
+mode(1)
+//
+// Demo of intfminunc.sci
+//
+
+//Find x in R^2 such that it minimizes the Rosenbrock function
+//f = 100*(x2 - x1^2)^2 + (1-x1)^2
+//Objective function to be minimised
+function y= f(x)
+y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
+endfunction
+//Starting point
+x0=[-1,2];
+intcon = [2]
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500]);
+//Calling
+[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
+// Press ENTER to continue
+halt() // Press return to continue
+
+//Find x in R^2 such that the below function is minimum
+//f = x1^2 + x2^2
+//Objective function to be minimised
+function y= f(x)
+y= x(1)^2 + x(2)^2;
+endfunction
+//Starting point
+x0=[2,1];
+intcon = [1];
+[xopt,fopt]=intfminunc(f,x0,intcon)
+// Press ENTER to continue
+halt() // Press return to continue
+
+//The below problem is an unbounded problem:
+//Find x in R^2 such that the below function is minimum
+//f = - x1^2 - x2^2
+//Objective function to be minimised
+function [y,g,h] = f(x)
+y = -x(1)^2 - x(2)^2;
+g = [-2*x(1),-2*x(2)];
+h = [-2,0;0,-2];
+endfunction
+//Starting point
+x0=[2,1];
+intcon = [1]
+options = list("gradobj","ON","hessian","on");
+[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
+//========= E N D === O F === D E M O =========//
diff --git a/newstructure/demos/intqpipopt.dem.sce b/newstructure/demos/intqpipopt.dem.sce
new file mode 100644
index 0000000..5d8686c
--- /dev/null
+++ b/newstructure/demos/intqpipopt.dem.sce
@@ -0,0 +1,32 @@
+mode(1)
+//
+// Demo of intqpipopt.sci
+//
+
+H = [1 -1; -1 2];
+f = [-2; -6];
+A = [1 1; -1 2; 2 1];
+b = [2; 2; 3];
+lb=[0,0];
+ub=[%inf, %inf];
+intcon = [1 2];
+[xopt,fopt,status,output]=intqpipopt(H,f,intcon,A,b,[],[],lb,ub)
+halt() // Press return to continue
+
+//Find x in R^6 such that:
+Aeq= [1,-1,1,0,3,1;
+-1,0,-3,-4,5,6;
+2,5,3,0,1,0];
+beq=[1; 2; 3];
+A= [0,1,0,1,2,-1;
+-1,0,2,1,1,0];
+b = [-1; 2.5];
+lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ub=[10000; 100; 1.5; 100; 100; 1000];
+x0 = repmat(0,6,1);
+param = list("MaxIter", 300, "CpuTime", 100);
+//and minimize 0.5*x'*H*x + f'*x with
+f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+intcon = [2 4];
+[xopt,fopt,exitflag,output]=intqpipopt(H,f,intcon,A,b,Aeq,beq,lb,ub,x0,param)
+//========= E N D === O F === D E M O =========//
diff --git a/newstructure/demos/matrix_cbcintlinprog.sci b/newstructure/demos/matrix_cbcintlinprog.sci
new file mode 100644
index 0000000..ff71700
--- /dev/null
+++ b/newstructure/demos/matrix_cbcintlinprog.sci
@@ -0,0 +1,296 @@
+// Code Authors: Akshay Miterani and Pranav Deshpande
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+function [xopt,fopt,status,output] = cbcmatrixintlinprog (varargin)
+ // Sci file wrapper for the matrix_cbcintlinprog.cpp file
+
+ // To check the number of input and output argument
+ [lhs , rhs] = argn();
+
+ // To check the number of argument given by user
+ if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 9 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set [4 6 8 9]"), "cbcintlinprog", rhs);
+ error(errmsg);
+ end
+
+ c = [];
+ intcon = [];
+ A = [];
+ b = [];
+ Aeq = [];
+ beq = [];
+ lb = [];
+ ub = [];
+ options = list();
+
+ c = varargin(1)
+ intcon = varargin(2)
+ A = varargin(3)
+ b = varargin(4)
+
+ if(size(c,2) == 0) then
+ errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"),"cbcintlinprog");
+ error(errmsg);
+ end
+
+ if (size(c,2)~=1) then
+ errmsg = msprintf(gettext("%s: Objective Coefficients should be a column matrix"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ nbVar = size(c,1);
+
+ if ( rhs<5 ) then
+ Aeq = []
+ beq = []
+ else
+ Aeq = varargin(5);
+ beq = varargin(6);
+ end
+
+ if ( rhs<7 ) then
+ lb = repmat(-%inf,1,nbVar);
+ ub = repmat(%inf,1,nbVar);
+ else
+ lb = varargin(7);
+ ub = varargin(8);
+ end
+
+ if (rhs<9|size(varargin(9))==0) then
+ options = list();
+ else
+ options = varargin(9);
+ end
+
+ //Check type of variables
+ Checktype("cbcintlinprog", c, "c", 1, "constant")
+ Checktype("cbcintlinprog", intcon, "intcon", 2, "constant")
+ Checktype("cbcintlinprog", A, "A", 3, "constant")
+ Checktype("cbcintlinprog", b, "b", 4, "constant")
+ Checktype("cbcintlinprog", Aeq, "Aeq", 5, "constant")
+ Checktype("cbcintlinprog", beq, "beq", 6, "constant")
+ Checktype("cbcintlinprog", lb, "lb", 7, "constant")
+ Checktype("cbcintlinprog", ub, "ub", 8, "constant")
+
+ // Check if the user gives empty matrix
+ if (size(lb,2)==0) then
+ lb = repmat(-%inf,nbVar,1);
+ end
+
+ if (size(intcon,2)==0) then
+ intcon = [];
+ end
+
+ if (size(ub,2)==0) then
+ ub = repmat(%inf,nbVar,1);
+ end
+
+ // Calculating the size of equality and inequality constraints
+ nbConInEq = size(A,1);
+ nbConEq = size(Aeq,1);
+
+ // Check if the user gives row vector
+ // and Changing it to a column matrix
+
+ if (size(lb,2)== [nbVar]) then
+ lb = lb';
+ end
+
+ if (size(ub,2)== [nbVar]) then
+ ub = ub';
+ end
+
+ if (size(b,2)== [nbConInEq]) then
+ b = b';
+ end
+
+ if (size(beq,2)== [nbConEq]) then
+ beq = beq';
+ end
+
+ for i=1:size(intcon,2)
+ if(intcon(i)>nbVar) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ if (intcon(i)<0) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ if(modulo(intcon(i),1)) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "cbcintlinprog");
+ error(errmsg);
+ end
+ end
+
+ //Check the size of inequality constraint which should equal to the number of inequality constraints
+ if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
+ errmsg = msprintf(gettext("%s: The size of inequality constraint is not equal to the number of variables"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+
+ //Check the size of lower bound of inequality constraint which should equal to the number of constraints
+ if ( size(b,1) ~= size(A,1)) then
+ errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraint is not equal to the number of constraint"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ //Check the size of equality constraint which should equal to the number of inequality constraints
+ if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0) then
+ errmsg = msprintf(gettext("%s: The size of equality constraint is not equal to the number of variables"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ //Check the size of upper bound of equality constraint which should equal to the number of constraints
+ if ( size(beq,1) ~= size(Aeq,1)) then
+ errmsg = msprintf(gettext("%s: The equality constraint upper bound is not equal to the number of equality constraint"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ //Check the size of Lower Bound which should equal to the number of variables
+ if ( size(lb,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ //Check the size of Upper Bound which should equal to the number of variables
+ if ( size(ub,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ if (type(options) ~= 15) then
+ errmsg = msprintf(gettext("%s: Options should be a list "), "cbcintlinprog");
+ error(errmsg);
+ end
+
+
+ if (modulo(size(options),2)) then
+ errmsg = msprintf(gettext("%s: Size of parameters should be even"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ //Check if the user gives a matrix instead of a vector
+
+ if (((size(intcon,1)~=1)& (size(intcon,2)~=1))&(size(intcon,2)~=0)) then
+ errmsg = msprintf(gettext("%s: intcon should be a vector"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ if (size(lb,1)~=1)& (size(lb,2)~=1) then
+ errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ if (size(ub,1)~=1)& (size(ub,2)~=1) then
+ errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "cbcintlinprog");
+ error(errmsg);
+ end
+
+ if (nbConInEq) then
+ if ((size(b,1)~=1)& (size(b,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "cbcintlinprog");
+ error(errmsg);
+ end
+ end
+
+ if (nbConEq) then
+ if (size(beq,1)~=1)& (size(beq,2)~=1) then
+ errmsg = msprintf(gettext("%s: Constraint Upper Bound should be a vector"), "cbcintlinprog");
+ error(errmsg);
+ end
+ end
+
+
+ //Changing the inputs in symphony's format
+ conMatrix = [A;Aeq]
+ nbCon = size(conMatrix,1);
+ conLB = [repmat(-%inf,size(A,1),1);beq];
+ conUB = [b;beq] ;
+
+ isInt = repmat(%f,1,nbVar);
+ // Changing intcon into column vector
+ intcon = intcon(:);
+ for i=1:size(intcon,1)
+ isInt(intcon(i)) = %t
+ end
+
+ objSense = 1.0;
+
+ //Changing into row vector
+ lb = lb';
+ ub = ub';
+ c = c';
+
+ //Pusing options as required to a double array
+ optval = [];
+ if length(options) == 0 then
+ optval = [0 0 0 0];
+ else
+ optval = [0 0 0 0];
+ for i=1:2:length(options)
+ select options(i)
+ case 'IntegerTolerance' then
+ optval(1) = options(i+1);
+ case 'MaxNodes' then
+ optval(2) = options(i+1);
+ case 'MaxTime' then
+ optval(3) = options(i+1);
+ case 'AllowableGap' then
+ optval(4) = options(i+1);
+ else
+ error(999, 'Unknown string argument passed.');
+ end
+ end
+ end
+
+ [xopt,fopt,status,nodes,nfpoints,L,U,niter] = sci_matrix_intlinprog(nbVar,nbCon,c,intcon,conMatrix,conLB,conUB,lb,ub,objSense,optval);
+
+ //Debugging Prints
+ //disp(c);disp(intcon);disp(conMatrix);disp(conLB);disp(conUB);disp(lb);disp(ub);disp(Aeq);disp(beq);disp(xopt);
+ //disp(L);disp(U);
+ //disp(options);
+
+ output = struct("relativegap" , [],..
+ "absolutegap" , [],..
+ "numnodes" , [],..
+ "numfeaspoints" , [],..
+ "numiterations" , [],..
+ "constrviolation" , [],..
+ "message" , '');
+
+ output.numnodes=[nodes];
+ output.numfeaspoints=[nfpoints];
+ output.numiterations=[niter];
+ output.relativegap=(U-L)/(abs(U)+1);
+ output.absolutegap=(U-L);
+ output.constrviolation = max([0;norm(Aeq*xopt-beq, 'inf');(lb'-xopt);(xopt-ub');(A*xopt-b)]);
+
+ select status
+
+ case 0 then
+ output.message="Optimal Solution"
+ case 1 then
+ output.message="Primal Infeasible"
+ case 2 then
+ output.message="Solution Limit is reached"
+ case 3 then
+ output.message="Node Limit is reached"
+ case 4 then
+ output.message="Numerical Difficulties"
+ case 5 then
+ output.message="Time Limit Reached"
+ case 6 then
+ output.message="Continuous Solution Unbounded"
+ case 7 then
+ output.message="Dual Infeasible"
+ else
+ output.message="Invalid status returned. Notify the Toolbox authors"
+ break;
+ end
+
+endfunction
diff --git a/newstructure/demos/mps_cbcintlinprog.sci b/newstructure/demos/mps_cbcintlinprog.sci
new file mode 100644
index 0000000..eef8b68
--- /dev/null
+++ b/newstructure/demos/mps_cbcintlinprog.sci
@@ -0,0 +1,79 @@
+// Code Authors: Akshay Miterani and Pranav Deshpande
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+function [xopt,fopt,status,output] = cbcmpsintlinprog(varargin)
+ // Sci File Wrapper for the mps_cbcintlinprog.cpp file
+
+ // Number of input and output arguments
+ [nOutput, nInput] = argn();
+
+ // To check the number of arguments given by the user
+ if (nInput<1 | nInput>2) then
+ error(999, 'Check the number of input arguments!');
+ end
+
+ mpsFile = varargin(1);
+ optval = [0,0,0,0];
+ if(nInput==2) then
+ options=varargin(2);
+ if length(options) == 0 then
+ optval = [0 0 0 0];
+ else
+ optval = [0 0 0 0];
+ for i=1:2:length(options)
+ select options(i)
+ case 'IntegerTolerance' then
+ optval(1) = options(i+1);
+ case 'MaxNodes' then
+ optval(2) = options(i+1);
+ case 'MaxTime' then
+ optval(3) = options(i+1);
+ case 'AllowableGap' then
+ optval(4) = options(i+1);
+ else
+ error(999, 'Unknown string argument passed.');
+ end
+ end
+ end
+ end
+
+ [xopt,fopt,status,nodes,nfpoints,L,U,niter] = sci_mps_intlinprog(mpsFile, optval)
+
+ output = struct("relativegap" , [],..
+ "absolutegap" , [],..
+ "numnodes" , [],..
+ "numfeaspoints" , [],..
+ "numiterations" , [],..
+ "message" , '');
+
+ output.numnodes = [nodes];
+ output.numfeaspoints = [nfpoints];
+ output.numiterations = [niter];
+ output.relativegap = (U-L)/(abs(U)+1);
+ output.absolutegap = (U-L);
+
+ select status
+
+ case 0 then
+ output.message="Optimal Solution"
+ case 1 then
+ output.message="Primal Infeasible"
+ case 2 then
+ output.message="Solution Limit is reached"
+ case 3 then
+ output.message="Node Limit is reached"
+ case 4 then
+ output.message="Numerical Difficulties"
+ case 5 then
+ output.message="Time Limit Reached"
+ case 6 then
+ output.message="Continuous Solution Unbounded"
+ case 7 then
+ output.message="Dual Infeasible"
+ else
+ output.message="Invalid status returned. Notify the Toolbox authors"
+ break;
+ end
+
+endfunction
diff --git a/newstructure/demos/sci_FOSSEE_Optimization_Toolbox.dem.gateway.sce b/newstructure/demos/sci_FOSSEE_Optimization_Toolbox.dem.gateway.sce
new file mode 100644
index 0000000..739ad2c
--- /dev/null
+++ b/newstructure/demos/sci_FOSSEE_Optimization_Toolbox.dem.gateway.sce
@@ -0,0 +1,16 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+// Author: Harpreet Singh
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+demopath = get_absolute_file_path("sci_FOSSEE_Optimization_Toolbox.dem.gateway.sce");
+
+subdemolist = ["Linprog","linprog.dem.sce";"Symphony", "symphony.dem.sce"; "SymphonyMat", "symphonymat.dem.sce"; "Qpipopt", "qpipopt.dem.sce"; "QpipoptMat", "qpipoptmat.dem.sce";"Lsqlin","lsqlin.dem.sce";"Lsqnonneg","lsqnonneg.dem.sce";"Fminunc","fminunc.dem.sce";"Fminbnd","fminbnd.dem.sce";"Fmincon","fmincon.dem.sce"];
+
+subdemolist(:,2) = demopath + subdemolist(:,2);